Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexab2 Structured version   Unicode version

Theorem rexab2 3103
 Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1
Assertion
Ref Expression
rexab2
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem rexab2
StepHypRef Expression
1 df-rex 2713 . 2
2 nfsab1 2428 . . . 4
3 nfv 1630 . . . 4
42, 3nfan 1847 . . 3
5 nfv 1630 . . 3
6 eleq1 2498 . . . . 5
7 abid 2426 . . . . 5
86, 7syl6bb 254 . . . 4
9 ralab2.1 . . . 4
108, 9anbi12d 693 . . 3
114, 5, 10cbvex 1984 . 2
121, 11bitri 242 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360  wex 1551   wcel 1726  cab 2424  wrex 2708 This theorem is referenced by:  rexrab2  3104  tmdgsum2  18131 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-rex 2713
 Copyright terms: Public domain W3C validator