MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexcom13 Structured version   Unicode version

Theorem rexcom13 2862
Description: Swap 1st and 3rd restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.)
Assertion
Ref Expression
rexcom13  |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  ph  <->  E. z  e.  C  E. y  e.  B  E. x  e.  A  ph )
Distinct variable groups:    y, z, A    x, z, B    x, y, C
Allowed substitution hints:    ph( x, y, z)    A( x)    B( y)    C( z)

Proof of Theorem rexcom13
StepHypRef Expression
1 rexcom 2861 . 2  |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  ph  <->  E. y  e.  B  E. x  e.  A  E. z  e.  C  ph )
2 rexcom 2861 . . 3  |-  ( E. x  e.  A  E. z  e.  C  ph  <->  E. z  e.  C  E. x  e.  A  ph )
32rexbii 2722 . 2  |-  ( E. y  e.  B  E. x  e.  A  E. z  e.  C  ph  <->  E. y  e.  B  E. z  e.  C  E. x  e.  A  ph )
4 rexcom 2861 . 2  |-  ( E. y  e.  B  E. z  e.  C  E. x  e.  A  ph  <->  E. z  e.  C  E. y  e.  B  E. x  e.  A  ph )
51, 3, 43bitri 263 1  |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  ph  <->  E. z  e.  C  E. y  e.  B  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 177   E.wrex 2698
This theorem is referenced by:  rexrot4  2863
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703
  Copyright terms: Public domain W3C validator