Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdifsn Structured version   Unicode version

Theorem rexdifsn 3931
 Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015.)
Assertion
Ref Expression
rexdifsn

Proof of Theorem rexdifsn
StepHypRef Expression
1 eldifsn 3927 . . . 4
21anbi1i 677 . . 3
3 anass 631 . . 3
42, 3bitri 241 . 2
54rexbii2 2734 1
 Colors of variables: wff set class Syntax hints:   wb 177   wa 359   wcel 1725   wne 2599  wrex 2706   cdif 3317  csn 3814 This theorem is referenced by:  usgra2pth0  28312  2spot2iun2spont  28358  dihatexv  32136  lcfl8b  32302 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-rex 2711  df-v 2958  df-dif 3323  df-sn 3820
 Copyright terms: Public domain W3C validator