Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexeqbidva Structured version   Unicode version

Theorem rexeqbidva 2919
 Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypotheses
Ref Expression
raleqbidva.1
raleqbidva.2
Assertion
Ref Expression
rexeqbidva
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rexeqbidva
StepHypRef Expression
1 raleqbidva.2 . . 3
21rexbidva 2722 . 2
3 raleqbidva.1 . . 3
43rexeqdv 2911 . 2
52, 4bitrd 245 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725  wrex 2706 This theorem is referenced by:  catpropd  13935 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rex 2711
 Copyright terms: Public domain W3C validator