Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexfrabdioph Unicode version

Theorem rexfrabdioph 26876
Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypothesis
Ref Expression
rexfrabdioph.1  |-  M  =  ( N  +  1 )
Assertion
Ref Expression
rexfrabdioph  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ph }  e.  (Dioph `  N ) )
Distinct variable groups:    u, t,
v, M    t, N, u, v    ph, t
Allowed substitution hints:    ph( v, u)

Proof of Theorem rexfrabdioph
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2419 . . 3  |-  F/_ u
( NN0  ^m  (
1 ... N ) )
2 nfcv 2419 . . 3  |-  F/_ a
( NN0  ^m  (
1 ... N ) )
3 nfv 1605 . . 3  |-  F/ a E. v  e.  NN0  ph
4 nfcv 2419 . . . 4  |-  F/_ u NN0
5 nfsbc1v 3010 . . . 4  |-  F/ u [. a  /  u ]. [. b  /  v ]. ph
64, 5nfrex 2598 . . 3  |-  F/ u E. b  e.  NN0  [. a  /  u ]. [. b  /  v ]. ph
7 nfv 1605 . . . . 5  |-  F/ b
ph
8 nfsbc1v 3010 . . . . 5  |-  F/ v
[. b  /  v ]. ph
9 sbceq1a 3001 . . . . 5  |-  ( v  =  b  ->  ( ph 
<-> 
[. b  /  v ]. ph ) )
107, 8, 9cbvrex 2761 . . . 4  |-  ( E. v  e.  NN0  ph  <->  E. b  e.  NN0  [. b  /  v ]. ph )
11 sbceq1a 3001 . . . . 5  |-  ( u  =  a  ->  ( [. b  /  v ]. ph  <->  [. a  /  u ]. [. b  /  v ]. ph ) )
1211rexbidv 2564 . . . 4  |-  ( u  =  a  ->  ( E. b  e.  NN0  [. b  /  v ]. ph  <->  E. b  e.  NN0  [. a  /  u ]. [. b  /  v ]. ph )
)
1310, 12syl5bb 248 . . 3  |-  ( u  =  a  ->  ( E. v  e.  NN0  ph  <->  E. b  e.  NN0  [. a  /  u ]. [. b  /  v ]. ph )
)
141, 2, 3, 6, 13cbvrab 2786 . 2  |-  { u  e.  ( NN0  ^m  (
1 ... N ) )  |  E. v  e. 
NN0  ph }  =  {
a  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. b  e.  NN0  [. a  /  u ]. [. b  /  v ]. ph }
15 rexfrabdioph.1 . . 3  |-  M  =  ( N  +  1 )
16 dfsbcq 2993 . . . 4  |-  ( b  =  ( t `  M )  ->  ( [. b  /  v ]. ph  <->  [. ( t `  M )  /  v ]. ph ) )
1716sbcbidv 3045 . . 3  |-  ( b  =  ( t `  M )  ->  ( [. a  /  u ]. [. b  /  v ]. ph  <->  [. a  /  u ]. [. ( t `  M )  /  v ]. ph ) )
18 dfsbcq 2993 . . 3  |-  ( a  =  ( t  |`  ( 1 ... N
) )  ->  ( [. a  /  u ]. [. ( t `  M )  /  v ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. ph ) )
1915, 17, 18rexrabdioph 26875 . 2  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. ph }  e.  (Dioph `  M ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. b  e. 
NN0  [. a  /  u ]. [. b  /  v ]. ph }  e.  (Dioph `  N ) )
2014, 19syl5eqel 2367 1  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ph }  e.  (Dioph `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547   [.wsbc 2991    |` cres 4691   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   1c1 8738    + caddc 8740   NN0cn0 9965   ...cfz 10782  Diophcdioph 26834
This theorem is referenced by:  2rexfrabdioph  26877  3rexfrabdioph  26878  7rexfrabdioph  26881  rmxdioph  27109  expdiophlem2  27115
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-hash 11338  df-mzpcl 26801  df-mzp 26802  df-dioph 26835
  Copyright terms: Public domain W3C validator