MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexima Unicode version

Theorem rexima 5757
Description: Existential quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypothesis
Ref Expression
rexima.x  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexima  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( E. x  e.  ( F " B
) ph  <->  E. y  e.  B  ps ) )
Distinct variable groups:    ph, y    ps, x    x, F, y    x, B, y    x, A, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem rexima
StepHypRef Expression
1 fvex 5539 . . 3  |-  ( F `
 y )  e. 
_V
21a1i 10 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  y  e.  B
)  ->  ( F `  y )  e.  _V )
3 fvelimab 5578 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( x  e.  ( F " B )  <->  E. y  e.  B  ( F `  y )  =  x ) )
4 eqcom 2285 . . . 4  |-  ( ( F `  y )  =  x  <->  x  =  ( F `  y ) )
54rexbii 2568 . . 3  |-  ( E. y  e.  B  ( F `  y )  =  x  <->  E. y  e.  B  x  =  ( F `  y ) )
63, 5syl6bb 252 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( x  e.  ( F " B )  <->  E. y  e.  B  x  =  ( F `  y ) ) )
7 rexima.x . . 3  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
87adantl 452 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  x  =  ( F `  y ) )  ->  ( ph  <->  ps ) )
92, 6, 8rexxfr2d 4551 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( E. x  e.  ( F " B
) ph  <->  E. y  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   _Vcvv 2788    C_ wss 3152   "cima 4692    Fn wfn 5250   ` cfv 5255
This theorem is referenced by:  supisolem  7221  ipodrsima  14268  lmflf  17700  caucfil  18709  dyadmbllem  18954  lhop1lem  19360
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263
  Copyright terms: Public domain W3C validator