Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximdva0 Structured version   Unicode version

Theorem reximdva0 3632
 Description: Restricted existence deduced from non-empty class. (Contributed by NM, 1-Feb-2012.)
Hypothesis
Ref Expression
reximdva0.1
Assertion
Ref Expression
reximdva0
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem reximdva0
StepHypRef Expression
1 n0 3630 . . 3
2 reximdva0.1 . . . . . . 7
32ex 424 . . . . . 6
43ancld 537 . . . . 5
54eximdv 1632 . . . 4
65imp 419 . . 3
71, 6sylan2b 462 . 2
8 df-rex 2704 . 2
97, 8sylibr 204 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359  wex 1550   wcel 1725   wne 2599  wrex 2699  c0 3621 This theorem is referenced by:  hashgt12el  11675  cstucnd  18307  supxrnemnf  24120  kerunit  24254  usgfiregdegfi  28315  elpaddn0  30535 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-rex 2704  df-v 2951  df-dif 3316  df-nul 3622
 Copyright terms: Public domain W3C validator