MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexlimddv Unicode version

Theorem rexlimddv 2671
Description: Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.)
Hypotheses
Ref Expression
rexlimddv.1  |-  ( ph  ->  E. x  e.  A  ps )
rexlimddv.2  |-  ( (
ph  /\  ( x  e.  A  /\  ps )
)  ->  ch )
Assertion
Ref Expression
rexlimddv  |-  ( ph  ->  ch )
Distinct variable groups:    ph, x    ch, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem rexlimddv
StepHypRef Expression
1 rexlimddv.1 . 2  |-  ( ph  ->  E. x  e.  A  ps )
2 rexlimddv.2 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  ps )
)  ->  ch )
32rexlimdvaa 2668 . 2  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
41, 3mpd 14 1  |-  ( ph  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684   E.wrex 2544
This theorem is referenced by:  mreexexlem4d  13549  mreexdomd  13551  chordthm  20134  esumpcvgval  23446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532  df-ral 2548  df-rex 2549
  Copyright terms: Public domain W3C validator