Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexlimdvaa Unicode version

Theorem rexlimdvaa 2668
 Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.)
Hypothesis
Ref Expression
rexlimdvaa.1
Assertion
Ref Expression
rexlimdvaa
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rexlimdvaa
StepHypRef Expression
1 rexlimdvaa.1 . . 3
21expr 598 . 2
32rexlimdva 2667 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358   wcel 1684  wrex 2544 This theorem is referenced by:  rexlimddv  2671  sscpwex  13692  ofrn2  23207 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-11 1715 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532  df-ral 2548  df-rex 2549
 Copyright terms: Public domain W3C validator