MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexneg Structured version   Unicode version

Theorem rexneg 10828
Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexneg  |-  ( A  e.  RR  ->  - e A  =  -u A )

Proof of Theorem rexneg
StepHypRef Expression
1 df-xneg 10741 . 2  |-  - e A  =  if ( A  =  +oo ,  -oo ,  if ( A  = 
-oo ,  +oo ,  -u A ) )
2 renepnf 9163 . . . 4  |-  ( A  e.  RR  ->  A  =/=  +oo )
3 ifnefalse 3771 . . . 4  |-  ( A  =/=  +oo  ->  if ( A  =  +oo ,  -oo ,  if ( A  =  -oo ,  +oo , 
-u A ) )  =  if ( A  =  -oo ,  +oo , 
-u A ) )
42, 3syl 16 . . 3  |-  ( A  e.  RR  ->  if ( A  =  +oo , 
-oo ,  if ( A  =  -oo ,  +oo , 
-u A ) )  =  if ( A  =  -oo ,  +oo , 
-u A ) )
5 renemnf 9164 . . . 4  |-  ( A  e.  RR  ->  A  =/=  -oo )
6 ifnefalse 3771 . . . 4  |-  ( A  =/=  -oo  ->  if ( A  =  -oo ,  +oo ,  -u A )  = 
-u A )
75, 6syl 16 . . 3  |-  ( A  e.  RR  ->  if ( A  =  -oo , 
+oo ,  -u A )  =  -u A )
84, 7eqtrd 2474 . 2  |-  ( A  e.  RR  ->  if ( A  =  +oo , 
-oo ,  if ( A  =  -oo ,  +oo , 
-u A ) )  =  -u A )
91, 8syl5eq 2486 1  |-  ( A  e.  RR  ->  - e A  =  -u A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1727    =/= wne 2605   ifcif 3763   RRcr 9020    +oocpnf 9148    -oocmnf 9149   -ucneg 9323    - ecxne 10738
This theorem is referenced by:  xneg0  10829  xnegcl  10830  xnegneg  10831  xltnegi  10833  rexsub  10850  xnegid  10853  xnegdi  10858  xpncan  10861  xnpcan  10862  xmulneg1  10879  xmulm1  10891  xadddi  10905  xlt2addrd  24155  xrsmulgzz  24231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-resscn 9078
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-pnf 9153  df-mnf 9154  df-xneg 10741
  Copyright terms: Public domain W3C validator