MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexpen Unicode version

Theorem rexpen 12522
Description: The real numbers are equinumerous to their own cross product, even though it is not necessarily true that  RR is well-orderable (so we cannot use infxpidm2 7660 directly). (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
rexpen  |-  ( RR 
X.  RR )  ~~  RR

Proof of Theorem rexpen
StepHypRef Expression
1 rpnnen 12521 . . . . . 6  |-  RR  ~~  ~P NN
2 nnenom 11058 . . . . . . 7  |-  NN  ~~  om
3 pwen 7050 . . . . . . 7  |-  ( NN 
~~  om  ->  ~P NN  ~~ 
~P om )
42, 3ax-mp 8 . . . . . 6  |-  ~P NN  ~~ 
~P om
51, 4entri 6931 . . . . 5  |-  RR  ~~  ~P om
6 omex 7360 . . . . . 6  |-  om  e.  _V
76pw2en 6985 . . . . 5  |-  ~P om  ~~  ( 2o  ^m  om )
85, 7entri 6931 . . . 4  |-  RR  ~~  ( 2o  ^m  om )
9 xpen 7040 . . . 4  |-  ( ( RR  ~~  ( 2o 
^m  om )  /\  RR  ~~  ( 2o  ^m  om ) )  ->  ( RR  X.  RR )  ~~  ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) ) )
108, 8, 9mp2an 653 . . 3  |-  ( RR 
X.  RR )  ~~  ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) )
11 2onn 6654 . . . . . . . 8  |-  2o  e.  om
1211elexi 2810 . . . . . . 7  |-  2o  e.  _V
1312, 12, 6xpmapen 7045 . . . . . 6  |-  ( ( 2o  X.  2o )  ^m  om )  ~~  ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) )
1413ensymi 6927 . . . . 5  |-  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )  ~~  (
( 2o  X.  2o )  ^m  om )
15 ssid 3210 . . . . . . . . . . . . 13  |-  2o  C_  2o
16 ssnnfi 7098 . . . . . . . . . . . . 13  |-  ( ( 2o  e.  om  /\  2o  C_  2o )  ->  2o  e.  Fin )
1711, 15, 16mp2an 653 . . . . . . . . . . . 12  |-  2o  e.  Fin
18 xpfi 7144 . . . . . . . . . . . 12  |-  ( ( 2o  e.  Fin  /\  2o  e.  Fin )  -> 
( 2o  X.  2o )  e.  Fin )
1917, 17, 18mp2an 653 . . . . . . . . . . 11  |-  ( 2o 
X.  2o )  e. 
Fin
20 isfinite 7369 . . . . . . . . . . 11  |-  ( ( 2o  X.  2o )  e.  Fin  <->  ( 2o  X.  2o )  ~<  om )
2119, 20mpbi 199 . . . . . . . . . 10  |-  ( 2o 
X.  2o )  ~<  om
226canth2 7030 . . . . . . . . . 10  |-  om  ~<  ~P
om
23 sdomtr 7015 . . . . . . . . . 10  |-  ( ( ( 2o  X.  2o )  ~<  om  /\  om  ~<  ~P
om )  ->  ( 2o  X.  2o )  ~<  ~P om )
2421, 22, 23mp2an 653 . . . . . . . . 9  |-  ( 2o 
X.  2o )  ~<  ~P om
25 sdomdom 6905 . . . . . . . . 9  |-  ( ( 2o  X.  2o ) 
~<  ~P om  ->  ( 2o  X.  2o )  ~<_  ~P
om )
2624, 25ax-mp 8 . . . . . . . 8  |-  ( 2o 
X.  2o )  ~<_  ~P
om
27 domentr 6936 . . . . . . . 8  |-  ( ( ( 2o  X.  2o )  ~<_  ~P om  /\  ~P om  ~~  ( 2o  ^m  om ) )  ->  ( 2o  X.  2o )  ~<_  ( 2o  ^m  om )
)
2826, 7, 27mp2an 653 . . . . . . 7  |-  ( 2o 
X.  2o )  ~<_  ( 2o  ^m  om )
29 mapdom1 7042 . . . . . . 7  |-  ( ( 2o  X.  2o )  ~<_  ( 2o  ^m  om )  ->  ( ( 2o 
X.  2o )  ^m  om )  ~<_  ( ( 2o 
^m  om )  ^m  om ) )
3028, 29ax-mp 8 . . . . . 6  |-  ( ( 2o  X.  2o )  ^m  om )  ~<_  ( ( 2o  ^m  om )  ^m  om )
31 mapxpen 7043 . . . . . . . 8  |-  ( ( 2o  e.  om  /\  om  e.  _V  /\  om  e.  _V )  ->  (
( 2o  ^m  om )  ^m  om )  ~~  ( 2o  ^m  ( om  X.  om ) ) )
3211, 6, 6, 31mp3an 1277 . . . . . . 7  |-  ( ( 2o  ^m  om )  ^m  om )  ~~  ( 2o  ^m  ( om  X.  om ) )
3312enref 6910 . . . . . . . 8  |-  2o  ~~  2o
34 xpomen 7659 . . . . . . . 8  |-  ( om 
X.  om )  ~~  om
35 mapen 7041 . . . . . . . 8  |-  ( ( 2o  ~~  2o  /\  ( om  X.  om )  ~~  om )  ->  ( 2o  ^m  ( om  X.  om ) )  ~~  ( 2o  ^m  om ) )
3633, 34, 35mp2an 653 . . . . . . 7  |-  ( 2o 
^m  ( om  X.  om ) )  ~~  ( 2o  ^m  om )
3732, 36entri 6931 . . . . . 6  |-  ( ( 2o  ^m  om )  ^m  om )  ~~  ( 2o  ^m  om )
38 domentr 6936 . . . . . 6  |-  ( ( ( ( 2o  X.  2o )  ^m  om )  ~<_  ( ( 2o  ^m  om )  ^m  om )  /\  ( ( 2o  ^m  om )  ^m  om )  ~~  ( 2o  ^m  om ) )  ->  (
( 2o  X.  2o )  ^m  om )  ~<_  ( 2o  ^m  om )
)
3930, 37, 38mp2an 653 . . . . 5  |-  ( ( 2o  X.  2o )  ^m  om )  ~<_  ( 2o  ^m  om )
40 endomtr 6935 . . . . 5  |-  ( ( ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) )  ~~  ( ( 2o  X.  2o )  ^m  om )  /\  ( ( 2o  X.  2o )  ^m  om )  ~<_  ( 2o  ^m  om )
)  ->  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )  ~<_  ( 2o 
^m  om ) )
4114, 39, 40mp2an 653 . . . 4  |-  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )  ~<_  ( 2o 
^m  om )
42 ovex 5899 . . . . . . 7  |-  ( 2o 
^m  om )  e.  _V
43 0ex 4166 . . . . . . 7  |-  (/)  e.  _V
4442, 43xpsnen 6962 . . . . . 6  |-  ( ( 2o  ^m  om )  X.  { (/) } )  ~~  ( 2o  ^m  om )
4544ensymi 6927 . . . . 5  |-  ( 2o 
^m  om )  ~~  (
( 2o  ^m  om )  X.  { (/) } )
46 snfi 6957 . . . . . . . . . 10  |-  { (/) }  e.  Fin
47 isfinite 7369 . . . . . . . . . 10  |-  ( {
(/) }  e.  Fin  <->  { (/)
}  ~<  om )
4846, 47mpbi 199 . . . . . . . . 9  |-  { (/) } 
~<  om
49 sdomtr 7015 . . . . . . . . 9  |-  ( ( { (/) }  ~<  om  /\  om 
~<  ~P om )  ->  { (/) }  ~<  ~P om )
5048, 22, 49mp2an 653 . . . . . . . 8  |-  { (/) } 
~<  ~P om
51 sdomdom 6905 . . . . . . . 8  |-  ( {
(/) }  ~<  ~P om  ->  { (/) }  ~<_  ~P om )
5250, 51ax-mp 8 . . . . . . 7  |-  { (/) }  ~<_  ~P om
53 domentr 6936 . . . . . . 7  |-  ( ( { (/) }  ~<_  ~P om  /\ 
~P om  ~~  ( 2o 
^m  om ) )  ->  { (/) }  ~<_  ( 2o 
^m  om ) )
5452, 7, 53mp2an 653 . . . . . 6  |-  { (/) }  ~<_  ( 2o  ^m  om )
5542xpdom2 6973 . . . . . 6  |-  ( {
(/) }  ~<_  ( 2o  ^m 
om )  ->  (
( 2o  ^m  om )  X.  { (/) } )  ~<_  ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) ) )
5654, 55ax-mp 8 . . . . 5  |-  ( ( 2o  ^m  om )  X.  { (/) } )  ~<_  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )
57 endomtr 6935 . . . . 5  |-  ( ( ( 2o  ^m  om )  ~~  ( ( 2o 
^m  om )  X.  { (/)
} )  /\  (
( 2o  ^m  om )  X.  { (/) } )  ~<_  ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) ) )  ->  ( 2o  ^m  om )  ~<_  ( ( 2o 
^m  om )  X.  ( 2o  ^m  om ) ) )
5845, 56, 57mp2an 653 . . . 4  |-  ( 2o 
^m  om )  ~<_  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )
59 sbth 6997 . . . 4  |-  ( ( ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) )  ~<_  ( 2o  ^m  om )  /\  ( 2o  ^m  om )  ~<_  ( ( 2o 
^m  om )  X.  ( 2o  ^m  om ) ) )  ->  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )  ~~  ( 2o  ^m  om ) )
6041, 58, 59mp2an 653 . . 3  |-  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )  ~~  ( 2o  ^m  om )
6110, 60entri 6931 . 2  |-  ( RR 
X.  RR )  ~~  ( 2o  ^m  om )
6261, 8entr4i 6934 1  |-  ( RR 
X.  RR )  ~~  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 1696   _Vcvv 2801    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   class class class wbr 4039   omcom 4672    X. cxp 4703  (class class class)co 5874   2oc2o 6489    ^m cmap 6788    ~~ cen 6876    ~<_ cdom 6877    ~< csdm 6878   Fincfn 6879   RRcr 8752   NNcn 9762
This theorem is referenced by:  cpnnen  12523
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175
  Copyright terms: Public domain W3C validator