MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexpr Unicode version

Theorem rexpr 3687
Description: Convert an existential quantification over a pair to a disjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralpr.1  |-  A  e. 
_V
ralpr.2  |-  B  e. 
_V
ralpr.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ralpr.4  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
Assertion
Ref Expression
rexpr  |-  ( E. x  e.  { A ,  B } ph  <->  ( ps  \/  ch ) )
Distinct variable groups:    x, A    x, B    ps, x    ch, x
Allowed substitution hint:    ph( x)

Proof of Theorem rexpr
StepHypRef Expression
1 ralpr.1 . 2  |-  A  e. 
_V
2 ralpr.2 . 2  |-  B  e. 
_V
3 ralpr.3 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 ralpr.4 . . 3  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
53, 4rexprg 3683 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( E. x  e. 
{ A ,  B } ph  <->  ( ps  \/  ch ) ) )
61, 2, 5mp2an 653 1  |-  ( E. x  e.  { A ,  B } ph  <->  ( ps  \/  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    = wceq 1623    e. wcel 1684   E.wrex 2544   _Vcvv 2788   {cpr 3641
This theorem is referenced by:  xpsdsval  17945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-v 2790  df-sbc 2992  df-un 3157  df-sn 3646  df-pr 3647
  Copyright terms: Public domain W3C validator