Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexpr Structured version   Unicode version

Theorem rexpr 3886
 Description: Convert an existential quantification over a pair to a disjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralpr.1
ralpr.2
ralpr.3
ralpr.4
Assertion
Ref Expression
rexpr
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem rexpr
StepHypRef Expression
1 ralpr.1 . 2
2 ralpr.2 . 2
3 ralpr.3 . . 3
4 ralpr.4 . . 3
53, 4rexprg 3882 . 2
61, 2, 5mp2an 655 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wo 359   wceq 1653   wcel 1727  wrex 2712  cvv 2962  cpr 3839 This theorem is referenced by:  xpsdsval  18442 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-rex 2717  df-v 2964  df-sbc 3168  df-un 3311  df-sn 3844  df-pr 3845
 Copyright terms: Public domain W3C validator