MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrab Structured version   Unicode version

Theorem rexrab 3090
Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab.1  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexrab  |-  ( E. x  e.  { y  e.  A  |  ph } ch  <->  E. x  e.  A  ( ps  /\  ch )
)
Distinct variable groups:    x, y    y, A    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( x, y)    A( x)

Proof of Theorem rexrab
StepHypRef Expression
1 ralab.1 . . . . 5  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
21elrab 3084 . . . 4  |-  ( x  e.  { y  e.  A  |  ph }  <->  ( x  e.  A  /\  ps ) )
32anbi1i 677 . . 3  |-  ( ( x  e.  { y  e.  A  |  ph }  /\  ch )  <->  ( (
x  e.  A  /\  ps )  /\  ch )
)
4 anass 631 . . 3  |-  ( ( ( x  e.  A  /\  ps )  /\  ch ) 
<->  ( x  e.  A  /\  ( ps  /\  ch ) ) )
53, 4bitri 241 . 2  |-  ( ( x  e.  { y  e.  A  |  ph }  /\  ch )  <->  ( x  e.  A  /\  ( ps  /\  ch ) ) )
65rexbii2 2726 1  |-  ( E. x  e.  { y  e.  A  |  ph } ch  <->  E. x  e.  A  ( ps  /\  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1725   E.wrex 2698   {crab 2701
This theorem is referenced by:  wereu2  4571  wdom2d  7540  enfin2i  8193  infm3  9959  pgpssslw  15240  1stcfb  17500  xkobval  17610  xkococn  17684  imasdsf1olem  18395  nbgraf1olem1  21443  cvmliftlem15  24977  wsuclem  25568  rexrabdioph  26845  ellspd  27222  hbtlem6  27301  pmtrfrn  27368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-rab 2706  df-v 2950
  Copyright terms: Public domain W3C validator