MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexri Unicode version

Theorem rexri 8900
Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
rexri.1  |-  A  e.  RR
Assertion
Ref Expression
rexri  |-  A  e. 
RR*

Proof of Theorem rexri
StepHypRef Expression
1 rexri.1 . 2  |-  A  e.  RR
2 rexr 8893 . 2  |-  ( A  e.  RR  ->  A  e.  RR* )
31, 2ax-mp 8 1  |-  A  e. 
RR*
Colors of variables: wff set class
Syntax hints:    e. wcel 1696   RRcr 8752   RR*cxr 8882
This theorem is referenced by:  xov1plusxeqvd  10796  coseq00topi  19886  coseq0negpitopi  19887  negpitopissre  19918  logimclad  19946  unitssxrge0  23299  hashge1  23403  dvreasin  25026  areacirclem2  25028  itgsin0pilem1  27847  hashgt12el  28218  hashgt12el2  28219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-un 3170  df-in 3172  df-ss 3179  df-xr 8887
  Copyright terms: Public domain W3C validator