MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexri Unicode version

Theorem rexri 8884
Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
rexri.1  |-  A  e.  RR
Assertion
Ref Expression
rexri  |-  A  e. 
RR*

Proof of Theorem rexri
StepHypRef Expression
1 rexri.1 . 2  |-  A  e.  RR
2 rexr 8877 . 2  |-  ( A  e.  RR  ->  A  e.  RR* )
31, 2ax-mp 8 1  |-  A  e. 
RR*
Colors of variables: wff set class
Syntax hints:    e. wcel 1684   RRcr 8736   RR*cxr 8866
This theorem is referenced by:  xov1plusxeqvd  10780  coseq00topi  19870  coseq0negpitopi  19871  negpitopissre  19902  logimclad  19930  unitssxrge0  23284  hashge1  23388  dvreasin  24923  areacirclem2  24925  itgsin0pilem1  27744
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-un 3157  df-in 3159  df-ss 3166  df-xr 8871
  Copyright terms: Public domain W3C validator