MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrp Structured version   Unicode version

Theorem rexrp 10631
Description: Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
rexrp  |-  ( E. x  e.  RR+  ph  <->  E. x  e.  RR  ( 0  < 
x  /\  ph ) )

Proof of Theorem rexrp
StepHypRef Expression
1 elrp 10614 . . . 4  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
21anbi1i 677 . . 3  |-  ( ( x  e.  RR+  /\  ph ) 
<->  ( ( x  e.  RR  /\  0  < 
x )  /\  ph ) )
3 anass 631 . . 3  |-  ( ( ( x  e.  RR  /\  0  <  x )  /\  ph )  <->  ( x  e.  RR  /\  ( 0  <  x  /\  ph ) ) )
42, 3bitri 241 . 2  |-  ( ( x  e.  RR+  /\  ph ) 
<->  ( x  e.  RR  /\  ( 0  <  x  /\  ph ) ) )
54rexbii2 2734 1  |-  ( E. x  e.  RR+  ph  <->  E. x  e.  RR  ( 0  < 
x  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    e. wcel 1725   E.wrex 2706   class class class wbr 4212   RRcr 8989   0cc0 8990    < clt 9120   RR+crp 10612
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-rp 10613
  Copyright terms: Public domain W3C validator