Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexsng Structured version   Unicode version

Theorem rexsng 3839
 Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.)
Hypothesis
Ref Expression
ralsng.1
Assertion
Ref Expression
rexsng
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rexsng
StepHypRef Expression
1 rexsns 3837 . 2
2 ralsng.1 . . 3
32sbcieg 3185 . 2
41, 3bitrd 245 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652   wcel 1725  wrex 2698  wsbc 3153  csn 3806 This theorem is referenced by:  rexsn  3842  rexprg  3850  rextpg  3852  iunxsng  4161  frirr  4551  frsn  4940  imasng  5218  ballotlemfc0  24742  ballotlemfcc  24743  frgra2v  28326  1vwmgra  28330  elpaddat  30538  elpadd2at  30540 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-v 2950  df-sbc 3154  df-sn 3812
 Copyright terms: Public domain W3C validator