MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rextpg Unicode version

Theorem rextpg 3805
Description: Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ralprg.2  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
raltpg.3  |-  ( x  =  C  ->  ( ph 
<->  th ) )
Assertion
Ref Expression
rextpg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( E. x  e. 
{ A ,  B ,  C } ph  <->  ( ps  \/  ch  \/  th )
) )
Distinct variable groups:    x, A    x, B    x, C    ps, x    ch, x    th, x
Allowed substitution hints:    ph( x)    V( x)    W( x)    X( x)

Proof of Theorem rextpg
StepHypRef Expression
1 ralprg.1 . . . . . 6  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 ralprg.2 . . . . . 6  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
31, 2rexprg 3803 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  e. 
{ A ,  B } ph  <->  ( ps  \/  ch ) ) )
43orbi1d 684 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( E. x  e.  { A ,  B } ph  \/  E. x  e.  { C } ph ) 
<->  ( ( ps  \/  ch )  \/  E. x  e.  { C } ph ) ) )
5 raltpg.3 . . . . . 6  |-  ( x  =  C  ->  ( ph 
<->  th ) )
65rexsng 3792 . . . . 5  |-  ( C  e.  X  ->  ( E. x  e.  { C } ph  <->  th ) )
76orbi2d 683 . . . 4  |-  ( C  e.  X  ->  (
( ( ps  \/  ch )  \/  E. x  e.  { C } ph ) 
<->  ( ( ps  \/  ch )  \/  th )
) )
84, 7sylan9bb 681 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  C  e.  X )  ->  (
( E. x  e. 
{ A ,  B } ph  \/  E. x  e.  { C } ph ) 
<->  ( ( ps  \/  ch )  \/  th )
) )
983impa 1148 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( E. x  e.  { A ,  B } ph  \/  E. x  e.  { C } ph ) 
<->  ( ( ps  \/  ch )  \/  th )
) )
10 df-tp 3767 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
1110rexeqi 2854 . . 3  |-  ( E. x  e.  { A ,  B ,  C } ph 
<->  E. x  e.  ( { A ,  B }  u.  { C } ) ph )
12 rexun 3472 . . 3  |-  ( E. x  e.  ( { A ,  B }  u.  { C } )
ph 
<->  ( E. x  e. 
{ A ,  B } ph  \/  E. x  e.  { C } ph ) )
1311, 12bitri 241 . 2  |-  ( E. x  e.  { A ,  B ,  C } ph 
<->  ( E. x  e. 
{ A ,  B } ph  \/  E. x  e.  { C } ph ) )
14 df-3or 937 . 2  |-  ( ( ps  \/  ch  \/  th )  <->  ( ( ps  \/  ch )  \/ 
th ) )
159, 13, 143bitr4g 280 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( E. x  e. 
{ A ,  B ,  C } ph  <->  ( ps  \/  ch  \/  th )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935    /\ w3a 936    = wceq 1649    e. wcel 1717   E.wrex 2652    u. cun 3263   {csn 3759   {cpr 3760   {ctp 3761
This theorem is referenced by:  rextp  3809  fr3nr  4702  nb3graprlem2  21329  frgra3vlem2  27756  3vfriswmgra  27760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-rex 2657  df-v 2903  df-sbc 3107  df-un 3270  df-sn 3765  df-pr 3766  df-tp 3767
  Copyright terms: Public domain W3C validator