MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexun Unicode version

Theorem rexun 3463
Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.)
Assertion
Ref Expression
rexun  |-  ( E. x  e.  ( A  u.  B ) ph  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )

Proof of Theorem rexun
StepHypRef Expression
1 df-rex 2648 . 2  |-  ( E. x  e.  ( A  u.  B ) ph  <->  E. x ( x  e.  ( A  u.  B
)  /\  ph ) )
2 19.43 1612 . . 3  |-  ( E. x ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph )
)  <->  ( E. x
( x  e.  A  /\  ph )  \/  E. x ( x  e.  B  /\  ph )
) )
3 elun 3424 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
43anbi1i 677 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ph ) )
5 andir 839 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
64, 5bitri 241 . . . 4  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph )
) )
76exbii 1589 . . 3  |-  ( E. x ( x  e.  ( A  u.  B
)  /\  ph )  <->  E. x
( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
8 df-rex 2648 . . . 4  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
9 df-rex 2648 . . . 4  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
108, 9orbi12i 508 . . 3  |-  ( ( E. x  e.  A  ph  \/  E. x  e.  B  ph )  <->  ( E. x ( x  e.  A  /\  ph )  \/  E. x ( x  e.  B  /\  ph ) ) )
112, 7, 103bitr4i 269 . 2  |-  ( E. x ( x  e.  ( A  u.  B
)  /\  ph )  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )
121, 11bitri 241 1  |-  ( E. x  e.  ( A  u.  B ) ph  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    \/ wo 358    /\ wa 359   E.wex 1547    e. wcel 1717   E.wrex 2643    u. cun 3254
This theorem is referenced by:  rexprg  3794  rextpg  3796  iunxun  4106  oarec  6734  zornn0g  8311  rpnnen2  12745  vdwlem6  13274  cmpfi  17386
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-rex 2648  df-v 2894  df-un 3261
  Copyright terms: Public domain W3C validator