MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuz3 Structured version   Unicode version

Theorem rexuz3 12153
Description: Rextrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
rexuz3  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
Distinct variable groups:    j, M    ph, j    j, k, Z
Allowed substitution hints:    ph( k)    M( k)

Proof of Theorem rexuz3
StepHypRef Expression
1 id 21 . . . . 5  |-  ( k  e.  Z  ->  k  e.  Z )
21rgen 2772 . . . 4  |-  A. k  e.  Z  k  e.  Z
3 fveq2 5729 . . . . . . 7  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
4 rexuz3.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
53, 4syl6eqr 2487 . . . . . 6  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  Z )
65raleqdv 2911 . . . . 5  |-  ( j  =  M  ->  ( A. k  e.  ( ZZ>=
`  j ) k  e.  Z  <->  A. k  e.  Z  k  e.  Z ) )
76rspcev 3053 . . . 4  |-  ( ( M  e.  ZZ  /\  A. k  e.  Z  k  e.  Z )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) k  e.  Z )
82, 7mpan2 654 . . 3  |-  ( M  e.  ZZ  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
k  e.  Z )
98biantrurd 496 . 2  |-  ( M  e.  ZZ  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
k  e.  Z  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
104uztrn2 10504 . . . . . . . . . 10  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
1110a1d 24 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ph  ->  k  e.  Z ) )
1211ancrd 539 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ph  ->  ( k  e.  Z  /\  ph ) ) )
1312ralimdva 2785 . . . . . . 7  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  A. k  e.  (
ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) )
14 eluzelz 10497 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
1514, 4eleq2s 2529 . . . . . . 7  |-  ( j  e.  Z  ->  j  e.  ZZ )
1613, 15jctild 529 . . . . . 6  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  ( j  e.  ZZ  /\ 
A. k  e.  (
ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) ) )
1716imp 420 . . . . 5  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( j  e.  ZZ  /\ 
A. k  e.  (
ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) )
18 uzid 10501 . . . . . . 7  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
19 simpl 445 . . . . . . . 8  |-  ( ( k  e.  Z  /\  ph )  ->  k  e.  Z )
2019ralimi 2782 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph )  ->  A. k  e.  (
ZZ>= `  j ) k  e.  Z )
21 eleq1 2497 . . . . . . . 8  |-  ( k  =  j  ->  (
k  e.  Z  <->  j  e.  Z ) )
2221rspcva 3051 . . . . . . 7  |-  ( ( j  e.  ( ZZ>= `  j )  /\  A. k  e.  ( ZZ>= `  j ) k  e.  Z )  ->  j  e.  Z )
2318, 20, 22syl2an 465 . . . . . 6  |-  ( ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) )  ->  j  e.  Z )
24 simpr 449 . . . . . . . 8  |-  ( ( k  e.  Z  /\  ph )  ->  ph )
2524ralimi 2782 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph )  ->  A. k  e.  (
ZZ>= `  j ) ph )
2625adantl 454 . . . . . 6  |-  ( ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) )  ->  A. k  e.  ( ZZ>= `  j ) ph )
2723, 26jca 520 . . . . 5  |-  ( ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) )  ->  (
j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )
)
2817, 27impbii 182 . . . 4  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) )
2928rexbii2 2735 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  Z  /\  ph ) )
30 rexanuz 12150 . . 3  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) 
<->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
k  e.  Z  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
3129, 30bitr2i 243 . 2  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) k  e.  Z  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph )
329, 31syl6rbb 255 1  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2706   E.wrex 2707   ` cfv 5455   ZZcz 10283   ZZ>=cuz 10489
This theorem is referenced by:  rexanuz2  12154  cau4  12161  clim2  12299  isercoll  12462  lmbr2  17324  lmff  17366  lmmbr3  19214  iscau3  19232  uniioombllem6  19481  ulmres  20305  rrncmslem  26542
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048  ax-pre-lttri 9065  ax-pre-lttrn 9066
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-po 4504  df-so 4505  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-neg 9295  df-z 10284  df-uz 10490
  Copyright terms: Public domain W3C validator