MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuzre Unicode version

Theorem rexuzre 11852
Description: Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
rexuzre  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  RR  A. k  e.  Z  (
j  <_  k  ->  ph ) ) )
Distinct variable groups:    j, M    ph, j    j, k, Z   
k, M
Allowed substitution hint:    ph( k)

Proof of Theorem rexuzre
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eluzelre 10255 . . . . . 6  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  RR )
2 rexuz3.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
31, 2eleq2s 2388 . . . . 5  |-  ( j  e.  Z  ->  j  e.  RR )
43adantr 451 . . . 4  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  j  e.  RR )
5 eluzelz 10254 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
65, 2eleq2s 2388 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  j  e.  ZZ )
7 eluzelz 10254 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
87, 2eleq2s 2388 . . . . . . . . . . 11  |-  ( k  e.  Z  ->  k  e.  ZZ )
9 eluz 10257 . . . . . . . . . . 11  |-  ( ( j  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
106, 8, 9syl2an 463 . . . . . . . . . 10  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
1110biimprd 214 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( j  <_  k  ->  k  e.  ( ZZ>= `  j ) ) )
1211expimpd 586 . . . . . . . 8  |-  ( j  e.  Z  ->  (
( k  e.  Z  /\  j  <_  k )  ->  k  e.  (
ZZ>= `  j ) ) )
1312imim1d 69 . . . . . . 7  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  ->  ph )  ->  ( ( k  e.  Z  /\  j  <_  k )  ->  ph ) ) )
1413exp4a 589 . . . . . 6  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  ->  ph )  ->  ( k  e.  Z  ->  (
j  <_  k  ->  ph ) ) ) )
1514ralimdv2 2636 . . . . 5  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  A. k  e.  Z  ( j  <_  k  ->  ph ) ) )
1615imp 418 . . . 4  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  A. k  e.  Z  ( j  <_  k  ->  ph ) )
174, 16jca 518 . . 3  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( j  e.  RR  /\ 
A. k  e.  Z  ( j  <_  k  ->  ph ) ) )
1817reximi2 2662 . 2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. j  e.  RR  A. k  e.  Z  (
j  <_  k  ->  ph ) )
19 simpl 443 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  M  e.  ZZ )
20 flcl 10943 . . . . . . . . . 10  |-  ( j  e.  RR  ->  ( |_ `  j )  e.  ZZ )
2120adantl 452 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( |_ `  j
)  e.  ZZ )
2221peano2zd 10136 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( |_ `  j )  +  1 )  e.  ZZ )
23 ifcl 3614 . . . . . . . 8  |-  ( ( ( ( |_ `  j )  +  1 )  e.  ZZ  /\  M  e.  ZZ )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  ZZ )
2422, 19, 23syl2anc 642 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  ZZ )
25 zre 10044 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  RR )
26 reflcl 10944 . . . . . . . . 9  |-  ( j  e.  RR  ->  ( |_ `  j )  e.  RR )
27 peano2re 9001 . . . . . . . . 9  |-  ( ( |_ `  j )  e.  RR  ->  (
( |_ `  j
)  +  1 )  e.  RR )
2826, 27syl 15 . . . . . . . 8  |-  ( j  e.  RR  ->  (
( |_ `  j
)  +  1 )  e.  RR )
29 max1 10530 . . . . . . . 8  |-  ( ( M  e.  RR  /\  ( ( |_ `  j )  +  1 )  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )
3025, 28, 29syl2an 463 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
31 eluz2 10252 . . . . . . 7  |-  ( if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  <->  ( M  e.  ZZ  /\  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
) ) )
3219, 24, 30, 31syl3anbrc 1136 . . . . . 6  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  (
ZZ>= `  M ) )
3332, 2syl6eleqr 2387 . . . . 5  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  Z
)
34 impexp 433 . . . . . . 7  |-  ( ( ( k  e.  Z  /\  j  <_  k )  ->  ph )  <->  ( k  e.  Z  ->  ( j  <_  k  ->  ph )
) )
35 uzss 10264 . . . . . . . . . . . . 13  |-  ( if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  ->  ( ZZ>=
`  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) 
C_  ( ZZ>= `  M
) )
3632, 35syl 15 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) 
C_  ( ZZ>= `  M
) )
3736, 2syl6sseqr 3238 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) 
C_  Z )
3837sselda 3193 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  k  e.  Z )
39 simplr 731 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  j  e.  RR )
4024adantr 451 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  e.  ZZ )
4140zred 10133 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  e.  RR )
42 eluzelre 10255 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )  ->  k  e.  RR )
4342adantl 452 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  k  e.  RR )
44 simpr 447 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  j  e.  RR )
4528adantl 452 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( |_ `  j )  +  1 )  e.  RR )
4624zred 10133 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  RR )
47 fllep1 10949 . . . . . . . . . . . . . 14  |-  ( j  e.  RR  ->  j  <_  ( ( |_ `  j )  +  1 ) )
4847adantl 452 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  j  <_  ( ( |_ `  j )  +  1 ) )
49 max2 10532 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  ( ( |_ `  j )  +  1 )  e.  RR )  ->  ( ( |_
`  j )  +  1 )  <_  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )
5025, 28, 49syl2an 463 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( |_ `  j )  +  1 )  <_  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
5144, 45, 46, 48, 50letrd 8989 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  j  <_  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
5251adantr 451 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  j  <_  if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
) )
53 eluzle 10256 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  <_ 
k )
5453adantl 452 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  <_ 
k )
5539, 41, 43, 52, 54letrd 8989 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  j  <_  k )
5638, 55jca 518 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  ( k  e.  Z  /\  j  <_  k ) )
5756ex 423 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )  ->  ( k  e.  Z  /\  j  <_ 
k ) ) )
5857imim1d 69 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( ( k  e.  Z  /\  j  <_  k )  ->  ph )  ->  ( k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )  ->  ph ) ) )
5934, 58syl5bir 209 . . . . . 6  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( k  e.  Z  ->  ( j  <_  k  ->  ph ) )  ->  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )  ->  ph ) ) )
6059ralimdv2 2636 . . . . 5  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( A. k  e.  Z  ( j  <_ 
k  ->  ph )  ->  A. k  e.  ( ZZ>=
`  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
ph ) )
61 fveq2 5541 . . . . . . 7  |-  ( m  =  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  -> 
( ZZ>= `  m )  =  ( ZZ>= `  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) ) )
6261raleqdv 2755 . . . . . 6  |-  ( m  =  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  -> 
( A. k  e.  ( ZZ>= `  m ) ph 
<-> 
A. k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
ph ) )
6362rspcev 2897 . . . . 5  |-  ( ( if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  Z  /\  A. k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
ph )  ->  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ph )
6433, 60, 63ee12an 1353 . . . 4  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( A. k  e.  Z  ( j  <_ 
k  ->  ph )  ->  E. m  e.  Z  A. k  e.  ( ZZ>=
`  m ) ph ) )
6564rexlimdva 2680 . . 3  |-  ( M  e.  ZZ  ->  ( E. j  e.  RR  A. k  e.  Z  ( j  <_  k  ->  ph )  ->  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ph ) )
66 fveq2 5541 . . . . 5  |-  ( m  =  j  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  j )
)
6766raleqdv 2755 . . . 4  |-  ( m  =  j  ->  ( A. k  e.  ( ZZ>=
`  m ) ph  <->  A. k  e.  ( ZZ>= `  j ) ph )
)
6867cbvrexv 2778 . . 3  |-  ( E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ph  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph )
6965, 68syl6ib 217 . 2  |-  ( M  e.  ZZ  ->  ( E. j  e.  RR  A. k  e.  Z  ( j  <_  k  ->  ph )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph ) )
7018, 69impbid2 195 1  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  RR  A. k  e.  Z  (
j  <_  k  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    C_ wss 3165   ifcif 3578   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   RRcr 8752   1c1 8754    + caddc 8756    <_ cle 8884   ZZcz 10040   ZZ>=cuz 10246   |_cfl 10940
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fl 10941
  Copyright terms: Public domain W3C validator