MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexxfr Unicode version

Theorem rexxfr 4633
Description: Transfer existence from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
ralxfr.1  |-  ( y  e.  C  ->  A  e.  B )
ralxfr.2  |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )
ralxfr.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexxfr  |-  ( E. x  e.  B  ph  <->  E. y  e.  C  ps )
Distinct variable groups:    ps, x    ph, y    x, A    x, y, B    x, C
Allowed substitution hints:    ph( x)    ps( y)    A( y)    C( y)

Proof of Theorem rexxfr
StepHypRef Expression
1 dfrex2 2632 . 2  |-  ( E. x  e.  B  ph  <->  -. 
A. x  e.  B  -.  ph )
2 dfrex2 2632 . . 3  |-  ( E. y  e.  C  ps  <->  -. 
A. y  e.  C  -.  ps )
3 ralxfr.1 . . . 4  |-  ( y  e.  C  ->  A  e.  B )
4 ralxfr.2 . . . 4  |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )
5 ralxfr.3 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
65notbid 285 . . . 4  |-  ( x  =  A  ->  ( -.  ph  <->  -.  ps )
)
73, 4, 6ralxfr 4631 . . 3  |-  ( A. x  e.  B  -.  ph  <->  A. y  e.  C  -.  ps )
82, 7xchbinxr 302 . 2  |-  ( E. y  e.  C  ps  <->  -. 
A. x  e.  B  -.  ph )
91, 8bitr4i 243 1  |-  ( E. x  e.  B  ph  <->  E. y  e.  C  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    = wceq 1642    e. wcel 1710   A.wral 2619   E.wrex 2620
This theorem is referenced by:  infm3  9800  reeff1o  19924  moxfr  26075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ral 2624  df-rex 2625  df-v 2866
  Copyright terms: Public domain W3C validator