MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexxfr2d Unicode version

Theorem rexxfr2d 4567
Description: Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by Mario Carneiro, 20-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Hypotheses
Ref Expression
ralxfr2d.1  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  V )
ralxfr2d.2  |-  ( ph  ->  ( x  e.  B  <->  E. y  e.  C  x  =  A ) )
ralxfr2d.3  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rexxfr2d  |-  ( ph  ->  ( E. x  e.  B  ps  <->  E. y  e.  C  ch )
)
Distinct variable groups:    x, A    x, y, B    x, C    ch, x    ph, x, y    ps, y
Allowed substitution hints:    ps( x)    ch( y)    A( y)    C( y)    V( x, y)

Proof of Theorem rexxfr2d
StepHypRef Expression
1 ralxfr2d.1 . . . 4  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  V )
2 ralxfr2d.2 . . . 4  |-  ( ph  ->  ( x  e.  B  <->  E. y  e.  C  x  =  A ) )
3 ralxfr2d.3 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
43notbid 285 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( -.  ps  <->  -.  ch )
)
51, 2, 4ralxfr2d 4566 . . 3  |-  ( ph  ->  ( A. x  e.  B  -.  ps  <->  A. y  e.  C  -.  ch )
)
65notbid 285 . 2  |-  ( ph  ->  ( -.  A. x  e.  B  -.  ps  <->  -.  A. y  e.  C  -.  ch )
)
7 dfrex2 2569 . 2  |-  ( E. x  e.  B  ps  <->  -. 
A. x  e.  B  -.  ps )
8 dfrex2 2569 . 2  |-  ( E. y  e.  C  ch  <->  -. 
A. y  e.  C  -.  ch )
96, 7, 83bitr4g 279 1  |-  ( ph  ->  ( E. x  e.  B  ps  <->  E. y  e.  C  ch )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557
This theorem is referenced by:  rexrn  5683  rexima  5773  cnpresti  17032  cnprest  17033  1stcrest  17195  subislly  17223  txrest  17341  trfil2  17598  met1stc  18083  xrlimcnp  20279  djhcvat42  32227
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-v 2803
  Copyright terms: Public domain W3C validator