MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexxfrd Structured version   Unicode version

Theorem rexxfrd 4740
Description: Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
ralxfrd.1  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  B )
ralxfrd.2  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  C  x  =  A )
ralxfrd.3  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rexxfrd  |-  ( ph  ->  ( E. x  e.  B  ps  <->  E. y  e.  C  ch )
)
Distinct variable groups:    x, A    x, y, B    x, C    ch, x    ph, x, y    ps, y
Allowed substitution hints:    ps( x)    ch( y)    A( y)    C( y)

Proof of Theorem rexxfrd
StepHypRef Expression
1 ralxfrd.1 . . . 4  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  B )
2 ralxfrd.2 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  C  x  =  A )
3 ralxfrd.3 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
43notbid 287 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( -.  ps  <->  -.  ch )
)
51, 2, 4ralxfrd 4739 . . 3  |-  ( ph  ->  ( A. x  e.  B  -.  ps  <->  A. y  e.  C  -.  ch )
)
65notbid 287 . 2  |-  ( ph  ->  ( -.  A. x  e.  B  -.  ps  <->  -.  A. y  e.  C  -.  ch )
)
7 dfrex2 2720 . 2  |-  ( E. x  e.  B  ps  <->  -. 
A. x  e.  B  -.  ps )
8 dfrex2 2720 . 2  |-  ( E. y  e.  C  ch  <->  -. 
A. y  e.  C  -.  ch )
96, 7, 83bitr4g 281 1  |-  ( ph  ->  ( E. x  e.  B  ps  <->  E. y  e.  C  ch )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708
This theorem is referenced by:  cmpfi  17473  elfm  17981  metucnOLD  18620  metucn  18621  rlimcnp  20806  fargshiftfo  21627  rmoxfrdOLD  23981  rmoxfrd  23982  iunrdx  24016  elrfirn  26751  dvh4dimat  32298  mapdcv  32520
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-v 2960
  Copyright terms: Public domain W3C validator