MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexxp Unicode version

Theorem rexxp 4844
Description: Existential quantification restricted to a cross product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995.) (Revised by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
ralxp.1  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
rexxp  |-  ( E. x  e.  ( A  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
Distinct variable groups:    x, y,
z, A    x, B, z    ph, y, z    ps, x    y, B
Allowed substitution hints:    ph( x)    ps( y, z)

Proof of Theorem rexxp
StepHypRef Expression
1 iunxpconst 4762 . . 3  |-  U_ y  e.  A  ( {
y }  X.  B
)  =  ( A  X.  B )
21rexeqi 2754 . 2  |-  ( E. x  e.  U_  y  e.  A  ( {
y }  X.  B
) ph  <->  E. x  e.  ( A  X.  B )
ph )
3 ralxp.1 . . 3  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
43rexiunxp 4842 . 2  |-  ( E. x  e.  U_  y  e.  A  ( {
y }  X.  B
) ph  <->  E. y  e.  A  E. z  e.  B  ps )
52, 4bitr3i 242 1  |-  ( E. x  e.  ( A  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632   E.wrex 2557   {csn 3653   <.cop 3656   U_ciun 3921    X. cxp 4703
This theorem is referenced by:  fnrnov  6009  foov  6010  ovelimab  6014  exopxfr  6199  xpf1o  7039  xpwdomg  7315  hsmexlem2  8069  cnref1o  10365  vdwmc  13041  arwhoma  13893  txbas  17278  txkgen  17362  xrofsup  23270  elunirnmbfm  23573  rmxypairf1o  27099  unxpwdom3  27359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-iun 3923  df-opab 4094  df-xp 4711  df-rel 4712
  Copyright terms: Public domain W3C validator