Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnnnub Unicode version

Theorem rfcnnnub 27376
Description: Given a real continuous function  F defined on a compact topological space, there is always a natural number that is a strict upper bound of its range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnnnub.1  |-  F/_ t F
rfcnnnub.2  |-  F/ t
ph
rfcnnnub.3  |-  K  =  ( topGen `  ran  (,) )
rfcnnnub.4  |-  ( ph  ->  J  e.  Comp )
rfcnnnub.5  |-  T  = 
U. J
rfcnnnub.6  |-  ( ph  ->  T  =/=  (/) )
rfcnnnub.7  |-  C  =  ( J  Cn  K
)
rfcnnnub.8  |-  ( ph  ->  F  e.  C )
Assertion
Ref Expression
rfcnnnub  |-  ( ph  ->  E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n )
Distinct variable groups:    t, n, T    n, F    t, J    t, K
Allowed substitution hints:    ph( t, n)    C( t, n)    F( t)    J( n)    K( n)

Proof of Theorem rfcnnnub
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 nfcv 2524 . . . . . . . 8  |-  F/_ s F
2 rfcnnnub.1 . . . . . . . 8  |-  F/_ t F
3 nfcv 2524 . . . . . . . 8  |-  F/_ s T
4 nfcv 2524 . . . . . . . 8  |-  F/_ t T
5 nfv 1626 . . . . . . . 8  |-  F/ s
ph
6 rfcnnnub.2 . . . . . . . 8  |-  F/ t
ph
7 rfcnnnub.5 . . . . . . . 8  |-  T  = 
U. J
8 rfcnnnub.3 . . . . . . . 8  |-  K  =  ( topGen `  ran  (,) )
9 rfcnnnub.4 . . . . . . . 8  |-  ( ph  ->  J  e.  Comp )
10 rfcnnnub.8 . . . . . . . . 9  |-  ( ph  ->  F  e.  C )
11 rfcnnnub.7 . . . . . . . . 9  |-  C  =  ( J  Cn  K
)
1210, 11syl6eleq 2478 . . . . . . . 8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
13 rfcnnnub.6 . . . . . . . 8  |-  ( ph  ->  T  =/=  (/) )
141, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13evthf 27367 . . . . . . 7  |-  ( ph  ->  E. s  e.  T  A. t  e.  T  ( F `  t )  <_  ( F `  s ) )
15 df-rex 2656 . . . . . . 7  |-  ( E. s  e.  T  A. t  e.  T  ( F `  t )  <_  ( F `  s
)  <->  E. s ( s  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s
) ) )
1614, 15sylib 189 . . . . . 6  |-  ( ph  ->  E. s ( s  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s
) ) )
178, 7, 11, 10fcnre 27365 . . . . . . . . . 10  |-  ( ph  ->  F : T --> RR )
1817ffvelrnda 5810 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  T )  ->  ( F `  s )  e.  RR )
1918ex 424 . . . . . . . 8  |-  ( ph  ->  ( s  e.  T  ->  ( F `  s
)  e.  RR ) )
2019anim1d 548 . . . . . . 7  |-  ( ph  ->  ( ( s  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )
)  ->  ( ( F `  s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )
) ) )
2120eximdv 1629 . . . . . 6  |-  ( ph  ->  ( E. s ( s  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s ) )  ->  E. s ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )
) ) )
2216, 21mpd 15 . . . . 5  |-  ( ph  ->  E. s ( ( F `  s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s
) ) )
2317ffvelrnda 5810 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
2423ex 424 . . . . . 6  |-  ( ph  ->  ( t  e.  T  ->  ( F `  t
)  e.  RR ) )
256, 24ralrimi 2731 . . . . 5  |-  ( ph  ->  A. t  e.  T  ( F `  t )  e.  RR )
26 19.41v 1913 . . . . 5  |-  ( E. s ( ( ( F `  s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s
) )  /\  A. t  e.  T  ( F `  t )  e.  RR )  <->  ( E. s ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )
)  /\  A. t  e.  T  ( F `  t )  e.  RR ) )
2722, 25, 26sylanbrc 646 . . . 4  |-  ( ph  ->  E. s ( ( ( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s ) )  /\  A. t  e.  T  ( F `  t )  e.  RR ) )
28 df-3an 938 . . . . 5  |-  ( ( ( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  <->  ( (
( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s ) )  /\  A. t  e.  T  ( F `  t )  e.  RR ) )
2928exbii 1589 . . . 4  |-  ( E. s ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  <->  E. s
( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )
)  /\  A. t  e.  T  ( F `  t )  e.  RR ) )
3027, 29sylibr 204 . . 3  |-  ( ph  ->  E. s ( ( F `  s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s
)  /\  A. t  e.  T  ( F `  t )  e.  RR ) )
31 arch 10151 . . . . . . . 8  |-  ( ( F `  s )  e.  RR  ->  E. n  e.  NN  ( F `  s )  <  n
)
32313ad2ant1 978 . . . . . . 7  |-  ( ( ( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  ->  E. n  e.  NN  ( F `  s )  <  n
)
33 df-rex 2656 . . . . . . 7  |-  ( E. n  e.  NN  ( F `  s )  <  n  <->  E. n ( n  e.  NN  /\  ( F `  s )  <  n ) )
3432, 33sylib 189 . . . . . 6  |-  ( ( ( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  ->  E. n
( n  e.  NN  /\  ( F `  s
)  <  n )
)
35 simprl 733 . . . . . . . . 9  |-  ( ( ( ( F `  s )  e.  RR  /\ 
A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  (
n  e.  NN  /\  ( F `  s )  <  n ) )  ->  n  e.  NN )
36 nfcv 2524 . . . . . . . . . . . . . 14  |-  F/_ t
s
372, 36nffv 5676 . . . . . . . . . . . . 13  |-  F/_ t
( F `  s
)
3837nfel1 2534 . . . . . . . . . . . 12  |-  F/ t ( F `  s
)  e.  RR
39 nfra1 2700 . . . . . . . . . . . 12  |-  F/ t A. t  e.  T  ( F `  t )  <_  ( F `  s )
40 nfra1 2700 . . . . . . . . . . . 12  |-  F/ t A. t  e.  T  ( F `  t )  e.  RR
4138, 39, 40nf3an 1839 . . . . . . . . . . 11  |-  F/ t ( ( F `  s )  e.  RR  /\ 
A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )
42 nfv 1626 . . . . . . . . . . . 12  |-  F/ t  n  e.  NN
43 nfcv 2524 . . . . . . . . . . . . 13  |-  F/_ t  <
44 nfcv 2524 . . . . . . . . . . . . 13  |-  F/_ t
n
4537, 43, 44nfbr 4198 . . . . . . . . . . . 12  |-  F/ t ( F `  s
)  <  n
4642, 45nfan 1836 . . . . . . . . . . 11  |-  F/ t ( n  e.  NN  /\  ( F `  s
)  <  n )
4741, 46nfan 1836 . . . . . . . . . 10  |-  F/ t ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)
48 simpll3 998 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  A. t  e.  T  ( F `  t )  e.  RR )
49 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  t  e.  T )
50 rsp 2710 . . . . . . . . . . . . 13  |-  ( A. t  e.  T  ( F `  t )  e.  RR  ->  ( t  e.  T  ->  ( F `
 t )  e.  RR ) )
5148, 49, 50sylc 58 . . . . . . . . . . . 12  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
52 simpll1 996 . . . . . . . . . . . 12  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  ( F `  s )  e.  RR )
53 simplrl 737 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  n  e.  NN )
5453nnred 9948 . . . . . . . . . . . 12  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  n  e.  RR )
55 simpl2 961 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  s )  e.  RR  /\ 
A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  (
n  e.  NN  /\  ( F `  s )  <  n ) )  ->  A. t  e.  T  ( F `  t )  <_  ( F `  s ) )
5655r19.21bi 2748 . . . . . . . . . . . 12  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  ( F `  t )  <_  ( F `  s
) )
57 simplrr 738 . . . . . . . . . . . 12  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  ( F `  s )  <  n )
5851, 52, 54, 56, 57lelttrd 9161 . . . . . . . . . . 11  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  ( F `  t )  <  n )
5958ex 424 . . . . . . . . . 10  |-  ( ( ( ( F `  s )  e.  RR  /\ 
A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  (
n  e.  NN  /\  ( F `  s )  <  n ) )  ->  ( t  e.  T  ->  ( F `  t )  <  n
) )
6047, 59ralrimi 2731 . . . . . . . . 9  |-  ( ( ( ( F `  s )  e.  RR  /\ 
A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  (
n  e.  NN  /\  ( F `  s )  <  n ) )  ->  A. t  e.  T  ( F `  t )  <  n )
6135, 60jca 519 . . . . . . . 8  |-  ( ( ( ( F `  s )  e.  RR  /\ 
A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  (
n  e.  NN  /\  ( F `  s )  <  n ) )  ->  ( n  e.  NN  /\  A. t  e.  T  ( F `  t )  <  n
) )
6261ex 424 . . . . . . 7  |-  ( ( ( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  ->  (
( n  e.  NN  /\  ( F `  s
)  <  n )  ->  ( n  e.  NN  /\ 
A. t  e.  T  ( F `  t )  <  n ) ) )
6362eximdv 1629 . . . . . 6  |-  ( ( ( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  ->  ( E. n ( n  e.  NN  /\  ( F `
 s )  < 
n )  ->  E. n
( n  e.  NN  /\ 
A. t  e.  T  ( F `  t )  <  n ) ) )
6434, 63mpd 15 . . . . 5  |-  ( ( ( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  ->  E. n
( n  e.  NN  /\ 
A. t  e.  T  ( F `  t )  <  n ) )
65 df-rex 2656 . . . . 5  |-  ( E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n  <->  E. n ( n  e.  NN  /\  A. t  e.  T  ( F `  t )  <  n ) )
6664, 65sylibr 204 . . . 4  |-  ( ( ( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  ->  E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n
)
6766eximi 1582 . . 3  |-  ( E. s ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  ->  E. s E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n
)
6830, 67syl 16 . 2  |-  ( ph  ->  E. s E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n
)
69 19.9v 1671 . 2  |-  ( E. s E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n  <->  E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n )
7068, 69sylib 189 1  |-  ( ph  ->  E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1547   F/wnf 1550    = wceq 1649    e. wcel 1717   F/_wnfc 2511    =/= wne 2551   A.wral 2650   E.wrex 2651   (/)c0 3572   U.cuni 3958   class class class wbr 4154   ran crn 4820   ` cfv 5395  (class class class)co 6021   RRcr 8923    < clt 9054    <_ cle 9055   NNcn 9933   (,)cioo 10849   topGenctg 13593    Cn ccn 17211   Compccmp 17372
This theorem is referenced by:  stoweidlem60  27478
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-icc 10856  df-fz 10977  df-fzo 11067  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-mulg 14743  df-cntz 15044  df-cmn 15342  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cn 17214  df-cnp 17215  df-cmp 17373  df-tx 17516  df-hmeo 17709  df-xms 18260  df-ms 18261  df-tms 18262
  Copyright terms: Public domain W3C validator