MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgen3 Unicode version

Theorem rgen3 2674
Description: Generalization rule for restricted quantification. (Contributed by NM, 12-Jan-2008.)
Hypothesis
Ref Expression
rgen3.1  |-  ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )
Assertion
Ref Expression
rgen3  |-  A. x  e.  A  A. y  e.  B  A. z  e.  C  ph
Distinct variable groups:    y, z, A    z, B    x, y,
z
Allowed substitution hints:    ph( x, y, z)    A( x)    B( x, y)    C( x, y, z)

Proof of Theorem rgen3
StepHypRef Expression
1 rgen3.1 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )
213expa 1151 . . 3  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  e.  C )  ->  ph )
32ralrimiva 2660 . 2  |-  ( ( x  e.  A  /\  y  e.  B )  ->  A. z  e.  C  ph )
43rgen2 2673 1  |-  A. x  e.  A  A. y  e.  B  A. z  e.  C  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1701   A.wral 2577
This theorem is referenced by:  isposi  14139  addcnlem  18420  isgrpoi  20918  cnrngo  21123  lnocoi  21390  0lnfn  22620  lnopcoi  22638  poseq  24638
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-11 1732
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-ex 1533  df-nf 1536  df-ral 2582
  Copyright terms: Public domain W3C validator