MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmpropd Unicode version

Theorem rhmpropd 15580
Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmpropd.a  |-  ( ph  ->  B  =  ( Base `  J ) )
rhmpropd.b  |-  ( ph  ->  C  =  ( Base `  K ) )
rhmpropd.c  |-  ( ph  ->  B  =  ( Base `  L ) )
rhmpropd.d  |-  ( ph  ->  C  =  ( Base `  M ) )
rhmpropd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
rhmpropd.f  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
rhmpropd.g  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  J ) y )  =  ( x ( .r `  L
) y ) )
rhmpropd.h  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  M
) y ) )
Assertion
Ref Expression
rhmpropd  |-  ( ph  ->  ( J RingHom  K )  =  ( L RingHom  M
) )
Distinct variable groups:    x, y, J    x, K, y    x, L, y    x, M, y    ph, x, y    x, B, y    x, C, y

Proof of Theorem rhmpropd
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 rhmpropd.a . . . . . 6  |-  ( ph  ->  B  =  ( Base `  J ) )
2 rhmpropd.c . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
3 rhmpropd.e . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
4 rhmpropd.g . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  J ) y )  =  ( x ( .r `  L
) y ) )
51, 2, 3, 4rngpropd 15372 . . . . 5  |-  ( ph  ->  ( J  e.  Ring  <->  L  e.  Ring ) )
6 rhmpropd.b . . . . . 6  |-  ( ph  ->  C  =  ( Base `  K ) )
7 rhmpropd.d . . . . . 6  |-  ( ph  ->  C  =  ( Base `  M ) )
8 rhmpropd.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
9 rhmpropd.h . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  M
) y ) )
106, 7, 8, 9rngpropd 15372 . . . . 5  |-  ( ph  ->  ( K  e.  Ring  <->  M  e.  Ring ) )
115, 10anbi12d 691 . . . 4  |-  ( ph  ->  ( ( J  e. 
Ring  /\  K  e.  Ring ) 
<->  ( L  e.  Ring  /\  M  e.  Ring )
) )
121, 6, 2, 7, 3, 8ghmpropd 14720 . . . . . 6  |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
1312eleq2d 2350 . . . . 5  |-  ( ph  ->  ( f  e.  ( J  GrpHom  K )  <->  f  e.  ( L  GrpHom  M ) ) )
14 eqid 2283 . . . . . . . . 9  |-  (mulGrp `  J )  =  (mulGrp `  J )
15 eqid 2283 . . . . . . . . 9  |-  ( Base `  J )  =  (
Base `  J )
1614, 15mgpbas 15331 . . . . . . . 8  |-  ( Base `  J )  =  (
Base `  (mulGrp `  J
) )
171, 16syl6eq 2331 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  J )
) )
18 eqid 2283 . . . . . . . . 9  |-  (mulGrp `  K )  =  (mulGrp `  K )
19 eqid 2283 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
2018, 19mgpbas 15331 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  (mulGrp `  K
) )
216, 20syl6eq 2331 . . . . . . 7  |-  ( ph  ->  C  =  ( Base `  (mulGrp `  K )
) )
22 eqid 2283 . . . . . . . . 9  |-  (mulGrp `  L )  =  (mulGrp `  L )
23 eqid 2283 . . . . . . . . 9  |-  ( Base `  L )  =  (
Base `  L )
2422, 23mgpbas 15331 . . . . . . . 8  |-  ( Base `  L )  =  (
Base `  (mulGrp `  L
) )
252, 24syl6eq 2331 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  L )
) )
26 eqid 2283 . . . . . . . . 9  |-  (mulGrp `  M )  =  (mulGrp `  M )
27 eqid 2283 . . . . . . . . 9  |-  ( Base `  M )  =  (
Base `  M )
2826, 27mgpbas 15331 . . . . . . . 8  |-  ( Base `  M )  =  (
Base `  (mulGrp `  M
) )
297, 28syl6eq 2331 . . . . . . 7  |-  ( ph  ->  C  =  ( Base `  (mulGrp `  M )
) )
30 eqid 2283 . . . . . . . . . 10  |-  ( .r
`  J )  =  ( .r `  J
)
3114, 30mgpplusg 15329 . . . . . . . . 9  |-  ( .r
`  J )  =  ( +g  `  (mulGrp `  J ) )
3231oveqi 5871 . . . . . . . 8  |-  ( x ( .r `  J
) y )  =  ( x ( +g  `  (mulGrp `  J )
) y )
33 eqid 2283 . . . . . . . . . 10  |-  ( .r
`  L )  =  ( .r `  L
)
3422, 33mgpplusg 15329 . . . . . . . . 9  |-  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) )
3534oveqi 5871 . . . . . . . 8  |-  ( x ( .r `  L
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y )
364, 32, 353eqtr3g 2338 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  (mulGrp `  J )
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
37 eqid 2283 . . . . . . . . . 10  |-  ( .r
`  K )  =  ( .r `  K
)
3818, 37mgpplusg 15329 . . . . . . . . 9  |-  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) )
3938oveqi 5871 . . . . . . . 8  |-  ( x ( .r `  K
) y )  =  ( x ( +g  `  (mulGrp `  K )
) y )
40 eqid 2283 . . . . . . . . . 10  |-  ( .r
`  M )  =  ( .r `  M
)
4126, 40mgpplusg 15329 . . . . . . . . 9  |-  ( .r
`  M )  =  ( +g  `  (mulGrp `  M ) )
4241oveqi 5871 . . . . . . . 8  |-  ( x ( .r `  M
) y )  =  ( x ( +g  `  (mulGrp `  M )
) y )
439, 39, 423eqtr3g 2338 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  (mulGrp `  K )
) y )  =  ( x ( +g  `  (mulGrp `  M )
) y ) )
4417, 21, 25, 29, 36, 43mhmpropd 14421 . . . . . 6  |-  ( ph  ->  ( (mulGrp `  J
) MndHom  (mulGrp `  K )
)  =  ( (mulGrp `  L ) MndHom  (mulGrp `  M ) ) )
4544eleq2d 2350 . . . . 5  |-  ( ph  ->  ( f  e.  ( (mulGrp `  J ) MndHom  (mulGrp `  K ) )  <->  f  e.  ( (mulGrp `  L ) MndHom  (mulGrp `  M ) ) ) )
4613, 45anbi12d 691 . . . 4  |-  ( ph  ->  ( ( f  e.  ( J  GrpHom  K )  /\  f  e.  ( (mulGrp `  J ) MndHom  (mulGrp `  K ) ) )  <-> 
( f  e.  ( L  GrpHom  M )  /\  f  e.  ( (mulGrp `  L ) MndHom  (mulGrp `  M ) ) ) ) )
4711, 46anbi12d 691 . . 3  |-  ( ph  ->  ( ( ( J  e.  Ring  /\  K  e. 
Ring )  /\  (
f  e.  ( J 
GrpHom  K )  /\  f  e.  ( (mulGrp `  J
) MndHom  (mulGrp `  K )
) ) )  <->  ( ( L  e.  Ring  /\  M  e.  Ring )  /\  (
f  e.  ( L 
GrpHom  M )  /\  f  e.  ( (mulGrp `  L
) MndHom  (mulGrp `  M )
) ) ) ) )
4814, 18isrhm 15501 . . 3  |-  ( f  e.  ( J RingHom  K
)  <->  ( ( J  e.  Ring  /\  K  e. 
Ring )  /\  (
f  e.  ( J 
GrpHom  K )  /\  f  e.  ( (mulGrp `  J
) MndHom  (mulGrp `  K )
) ) ) )
4922, 26isrhm 15501 . . 3  |-  ( f  e.  ( L RingHom  M
)  <->  ( ( L  e.  Ring  /\  M  e. 
Ring )  /\  (
f  e.  ( L 
GrpHom  M )  /\  f  e.  ( (mulGrp `  L
) MndHom  (mulGrp `  M )
) ) ) )
5047, 48, 493bitr4g 279 . 2  |-  ( ph  ->  ( f  e.  ( J RingHom  K )  <->  f  e.  ( L RingHom  M ) ) )
5150eqrdv 2281 1  |-  ( ph  ->  ( J RingHom  K )  =  ( L RingHom  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   .rcmulr 13209   MndHom cmhm 14413    GrpHom cghm 14680  mulGrpcmgp 15325   Ringcrg 15337   RingHom crh 15494
This theorem is referenced by:  zrhpropd  16469  evl1rhm  19412
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-0g 13404  df-mnd 14367  df-mhm 14415  df-grp 14489  df-ghm 14681  df-mgp 15326  df-rng 15340  df-ur 15342  df-rnghom 15496
  Copyright terms: Public domain W3C validator