MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riiner Unicode version

Theorem riiner 6732
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riiner  |-  ( A. x  e.  A  R  Er  B  ->  ( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    R( x)

Proof of Theorem riiner
StepHypRef Expression
1 xpider 6730 . . 3  |-  ( B  X.  B )  Er  B
2 riin0 3975 . . . . 5  |-  ( A  =  (/)  ->  ( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  =  ( B  X.  B ) )
32adantl 452 . . . 4  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =  (/) )  -> 
( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  =  ( B  X.  B ) )
4 ereq1 6667 . . . 4  |-  ( ( ( B  X.  B
)  i^i  |^|_ x  e.  A  R )  =  ( B  X.  B
)  ->  ( (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B  <->  ( B  X.  B )  Er  B
) )
53, 4syl 15 . . 3  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =  (/) )  -> 
( ( ( B  X.  B )  i^i  |^|_ x  e.  A  R
)  Er  B  <->  ( B  X.  B )  Er  B
) )
61, 5mpbiri 224 . 2  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =  (/) )  -> 
( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B )
7 iiner 6731 . . . 4  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  R  Er  B )  ->  |^|_ x  e.  A  R  Er  B )
87ancoms 439 . . 3  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =/=  (/) )  ->  |^|_ x  e.  A  R  Er  B )
9 erssxp 6683 . . . . . 6  |-  ( R  Er  B  ->  R  C_  ( B  X.  B
) )
109ralimi 2618 . . . . 5  |-  ( A. x  e.  A  R  Er  B  ->  A. x  e.  A  R  C_  ( B  X.  B ) )
11 riinn0 3976 . . . . 5  |-  ( ( A. x  e.  A  R  C_  ( B  X.  B )  /\  A  =/=  (/) )  ->  (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  = 
|^|_ x  e.  A  R )
1210, 11sylan 457 . . . 4  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =/=  (/) )  ->  (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  = 
|^|_ x  e.  A  R )
13 ereq1 6667 . . . 4  |-  ( ( ( B  X.  B
)  i^i  |^|_ x  e.  A  R )  = 
|^|_ x  e.  A  R  ->  ( ( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_
x  e.  A  R  Er  B ) )
1412, 13syl 15 . . 3  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =/=  (/) )  ->  (
( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_ x  e.  A  R  Er  B
) )
158, 14mpbird 223 . 2  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =/=  (/) )  ->  (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B )
166, 15pm2.61dane 2524 1  |-  ( A. x  e.  A  R  Er  B  ->  ( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    =/= wne 2446   A.wral 2543    i^i cin 3151    C_ wss 3152   (/)c0 3455   |^|_ciin 3906    X. cxp 4687    Er wer 6657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-iin 3908  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-er 6660
  Copyright terms: Public domain W3C validator