Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rint0 Structured version   Unicode version

Theorem rint0 4090
 Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0

Proof of Theorem rint0
StepHypRef Expression
1 inteq 4053 . . 3
21ineq2d 3542 . 2
3 int0 4064 . . . 4
43ineq2i 3539 . . 3
5 inv1 3654 . . 3
64, 5eqtri 2456 . 2
72, 6syl6eq 2484 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652  cvv 2956   cin 3319  c0 3628  cint 4050 This theorem is referenced by:  incexclem  12616  incexc  12617  mrerintcl  13822  ismred2  13828  txtube  17672 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-v 2958  df-dif 3323  df-in 3327  df-ss 3334  df-nul 3629  df-int 4051
 Copyright terms: Public domain W3C validator