MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota1 Unicode version

Theorem riota1 6339
Description: Property of restricted iota. Compare iota1 5249. (Contributed by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
riota1  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  (
iota_ x  e.  A ph )  =  x
) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem riota1
StepHypRef Expression
1 df-reu 2563 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 iota1 5249 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  ->  ( ( x  e.  A  /\  ph )  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
31, 2sylbi 187 . 2  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
4 riotaiota 6326 . . 3  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A ph )  =  ( iota x ( x  e.  A  /\  ph )
) )
54eqeq1d 2304 . 2  |-  ( E! x  e.  A  ph  ->  ( ( iota_ x  e.  A ph )  =  x  <->  ( iota x
( x  e.  A  /\  ph ) )  =  x ) )
63, 5bitr4d 247 1  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  (
iota_ x  e.  A ph )  =  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   E!weu 2156   E!wreu 2558   iotacio 5233   iota_crio 6313
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-reu 2563  df-v 2803  df-sbc 3005  df-un 3170  df-if 3579  df-sn 3659  df-pr 3660  df-uni 3844  df-iota 5235  df-riota 6320
  Copyright terms: Public domain W3C validator