Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota1 Structured version   Unicode version

Theorem riota1 6560
 Description: Property of restricted iota. Compare iota1 5424. (Contributed by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
riota1
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem riota1
StepHypRef Expression
1 df-reu 2704 . . 3
2 iota1 5424 . . 3
31, 2sylbi 188 . 2
4 riotaiota 6547 . . 3
54eqeq1d 2443 . 2
63, 5bitr4d 248 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725  weu 2280  wreu 2699  cio 5408  crio 6534 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-reu 2704  df-v 2950  df-sbc 3154  df-un 3317  df-if 3732  df-sn 3812  df-pr 3813  df-uni 4008  df-iota 5410  df-riota 6541
 Copyright terms: Public domain W3C validator