Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota5 Structured version   Unicode version

Theorem riota5 6577
 Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
riota5.1
riota5.2
Assertion
Ref Expression
riota5
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem riota5
StepHypRef Expression
1 nfcvd 2575 . 2
2 riota5.1 . 2
3 riota5.2 . 2
41, 2, 3riota5f 6576 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   wceq 1653   wcel 1726  crio 6544 This theorem is referenced by:  riota5OLD  6578  f1ocnvfv3  6587  lubid  14441  lubun  14552  adjvalval  23442  xdivpnfrp  24181  xrsinvgval  24201  cdleme32fva  31296  cdlemg1a  31429 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-reu 2714  df-v 2960  df-sbc 3164  df-un 3327  df-if 3742  df-sn 3822  df-pr 3823  df-uni 4018  df-iota 5420  df-riota 6551
 Copyright terms: Public domain W3C validator