Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota5OLD Unicode version

Theorem riota5OLD 6347
 Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
riota5OLD.1
Assertion
Ref Expression
riota5OLD
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem riota5OLD
StepHypRef Expression
1 simpr 447 . 2
2 riota5OLD.1 . . 3
323expa 1151 . 2
41, 3riota5 6346 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wa 358   w3a 934   wceq 1632   wcel 1696  crio 6313 This theorem is referenced by:  sqr0  11743  lubun  14243  odval2  14882  adjvalval  22533  unxpwdom3  27359  lubunNEW  29785  lub0N  30001  glb0N  30005  trlval2  30974  cdlemefrs32fva  31211 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-reu 2563  df-v 2803  df-sbc 3005  df-un 3170  df-if 3579  df-sn 3659  df-pr 3660  df-uni 3844  df-iota 5235  df-riota 6320
 Copyright terms: Public domain W3C validator