MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota5f Structured version   Unicode version

Theorem riota5f 6577
Description: A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota5f.1  |-  ( ph  -> 
F/_ x B )
riota5f.2  |-  ( ph  ->  B  e.  A )
riota5f.3  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  x  =  B ) )
Assertion
Ref Expression
riota5f  |-  ( ph  ->  ( iota_ x  e.  A ps )  =  B
)
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    ps( x)    B( x)

Proof of Theorem riota5f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 riota5f.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  x  =  B ) )
21ralrimiva 2791 . 2  |-  ( ph  ->  A. x  e.  A  ( ps  <->  x  =  B
) )
3 riota5f.2 . . . 4  |-  ( ph  ->  B  e.  A )
4 a1tru 1340 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  ->  T.  )
5 reu6i 3127 . . . . . . . . 9  |-  ( ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) )  ->  E! x  e.  A  ps )
65adantl 454 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  ->  E! x  e.  A  ps )
7 nfv 1630 . . . . . . . . . 10  |-  F/ x ph
8 nfv 1630 . . . . . . . . . . 11  |-  F/ x  y  e.  A
9 nfra1 2758 . . . . . . . . . . 11  |-  F/ x A. x  e.  A  ( ps  <->  x  =  y
)
108, 9nfan 1847 . . . . . . . . . 10  |-  F/ x
( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) )
117, 10nfan 1847 . . . . . . . . 9  |-  F/ x
( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )
12 nfcvd 2575 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  ->  F/_ x y )
13 nfvd 1631 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  ->  F/ x  T.  )
14 simprl 734 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  ->  y  e.  A )
15 simpr 449 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  x  =  y )
16 simplrr 739 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  A. x  e.  A  ( ps  <->  x  =  y
) )
17 simplrl 738 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  y  e.  A )
1815, 17eqeltrd 2512 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  x  e.  A )
19 rsp 2768 . . . . . . . . . . . 12  |-  ( A. x  e.  A  ( ps 
<->  x  =  y )  ->  ( x  e.  A  ->  ( ps  <->  x  =  y ) ) )
2016, 18, 19sylc 59 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  ( ps  <->  x  =  y ) )
2115, 20mpbird 225 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  ps )
22 a1tru 1340 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  T.  )
2321, 222thd 233 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  ( ps  <->  T.  )
)
2411, 12, 13, 14, 23riota2df 6573 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  E! x  e.  A  ps )  ->  (  T.  <->  (
iota_ x  e.  A ps )  =  y
) )
256, 24mpdan 651 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  ->  (  T.  <->  (
iota_ x  e.  A ps )  =  y
) )
264, 25mpbid 203 . . . . . 6  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  ->  ( iota_ x  e.  A ps )  =  y )
2726expr 600 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  ( A. x  e.  A  ( ps  <->  x  =  y
)  ->  ( iota_ x  e.  A ps )  =  y ) )
2827ralrimiva 2791 . . . 4  |-  ( ph  ->  A. y  e.  A  ( A. x  e.  A  ( ps  <->  x  =  y
)  ->  ( iota_ x  e.  A ps )  =  y ) )
29 rspsbc 3241 . . . 4  |-  ( B  e.  A  ->  ( A. y  e.  A  ( A. x  e.  A  ( ps  <->  x  =  y
)  ->  ( iota_ x  e.  A ps )  =  y )  ->  [. B  /  y ]. ( A. x  e.  A  ( ps  <->  x  =  y )  ->  ( iota_ x  e.  A ps )  =  y )
) )
303, 28, 29sylc 59 . . 3  |-  ( ph  ->  [. B  /  y ]. ( A. x  e.  A  ( ps  <->  x  =  y )  ->  ( iota_ x  e.  A ps )  =  y )
)
31 nfcvd 2575 . . . . . . . 8  |-  ( ph  -> 
F/_ x y )
32 riota5f.1 . . . . . . . 8  |-  ( ph  -> 
F/_ x B )
3331, 32nfeqd 2588 . . . . . . 7  |-  ( ph  ->  F/ x  y  =  B )
347, 33nfan1 1846 . . . . . 6  |-  F/ x
( ph  /\  y  =  B )
35 simpr 449 . . . . . . . 8  |-  ( (
ph  /\  y  =  B )  ->  y  =  B )
3635eqeq2d 2449 . . . . . . 7  |-  ( (
ph  /\  y  =  B )  ->  (
x  =  y  <->  x  =  B ) )
3736bibi2d 311 . . . . . 6  |-  ( (
ph  /\  y  =  B )  ->  (
( ps  <->  x  =  y )  <->  ( ps  <->  x  =  B ) ) )
3834, 37ralbid 2725 . . . . 5  |-  ( (
ph  /\  y  =  B )  ->  ( A. x  e.  A  ( ps  <->  x  =  y
)  <->  A. x  e.  A  ( ps  <->  x  =  B
) ) )
3935eqeq2d 2449 . . . . 5  |-  ( (
ph  /\  y  =  B )  ->  (
( iota_ x  e.  A ps )  =  y  <->  (
iota_ x  e.  A ps )  =  B
) )
4038, 39imbi12d 313 . . . 4  |-  ( (
ph  /\  y  =  B )  ->  (
( A. x  e.  A  ( ps  <->  x  =  y )  ->  ( iota_ x  e.  A ps )  =  y )  <->  ( A. x  e.  A  ( ps  <->  x  =  B
)  ->  ( iota_ x  e.  A ps )  =  B ) ) )
413, 40sbcied 3199 . . 3  |-  ( ph  ->  ( [. B  / 
y ]. ( A. x  e.  A  ( ps  <->  x  =  y )  -> 
( iota_ x  e.  A ps )  =  y
)  <->  ( A. x  e.  A  ( ps  <->  x  =  B )  -> 
( iota_ x  e.  A ps )  =  B
) ) )
4230, 41mpbid 203 . 2  |-  ( ph  ->  ( A. x  e.  A  ( ps  <->  x  =  B )  ->  ( iota_ x  e.  A ps )  =  B )
)
432, 42mpd 15 1  |-  ( ph  ->  ( iota_ x  e.  A ps )  =  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    T. wtru 1326    = wceq 1653    e. wcel 1726   F/_wnfc 2561   A.wral 2707   E!wreu 2709   [.wsbc 3163   iota_crio 6545
This theorem is referenced by:  riota5  6578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-reu 2714  df-v 2960  df-sbc 3164  df-un 3327  df-if 3742  df-sn 3822  df-pr 3823  df-uni 4018  df-iota 5421  df-riota 6552
  Copyright terms: Public domain W3C validator