Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaiota Structured version   Unicode version

Theorem riotaiota 6555
 Description: Restricted iota in terms of iota. (Contributed by NM, 15-Sep-2011.)
Assertion
Ref Expression
riotaiota

Proof of Theorem riotaiota
StepHypRef Expression
1 df-riota 6549 . 2
2 iftrue 3745 . 2
31, 2syl5eq 2480 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   wcel 1725  cab 2422  wreu 2707  cif 3739  cio 5416  cfv 5454  cund 6541  crio 6542 This theorem is referenced by:  riotauni  6556  riotacl2  6563  riota1  6568  riota2df  6570  snriota  6580  riotaprc  6587  ismgmid  14710  q1peqb  20077  adjval  23393 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-if 3740  df-riota 6549
 Copyright terms: Public domain W3C validator