Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotasv Structured version   Unicode version

Theorem riotasv 6599
 Description: Value of description binder for a single-valued class expression (as in e.g. reusv2 4731). Special case of riota2f 6573. (Contributed by NM, 26-Jan-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
riotasv.1
riotasv.2
Assertion
Ref Expression
riotasv
Distinct variable groups:   ,,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   (,)

Proof of Theorem riotasv
StepHypRef Expression
1 riotasv.1 . . 3
2 riotasv.2 . . . . 5
32a1i 11 . . . 4
4 id 21 . . . 4
53, 4riotasvd 6594 . . 3
61, 5mpan2 654 . 2
763impib 1152 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   w3a 937   wceq 1653   wcel 1726  wral 2707  cvv 2958  crio 6544 This theorem is referenced by:  cdleme26e  31218  cdleme26eALTN  31220  cdleme26fALTN  31221  cdleme26f  31222  cdleme26f2ALTN  31223  cdleme26f2  31224 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-iota 5420  df-fun 5458  df-fv 5464  df-undef 6545  df-riota 6551
 Copyright terms: Public domain W3C validator