Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotasv2s Structured version   Unicode version

Theorem riotasv2s 6599
 Description: The value of description binder for a single-valued class expression (as in e.g. reusv2 4732) in the form of a substitution instance. Special case of riota2f 6574. (Contributed by NM, 3-Mar-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypothesis
Ref Expression
riotasv2s.2
Assertion
Ref Expression
riotasv2s
Distinct variable groups:   ,,   ,,   ,   ,,   ,
Allowed substitution hints:   ()   ()   (,)   (,)

Proof of Theorem riotasv2s
StepHypRef Expression
1 3simpc 957 . 2
2 simp1 958 . 2
3 riotasv2s.2 . . . . . 6
4 nfra1 2758 . . . . . . 7
5 nfcv 2574 . . . . . . 7
64, 5nfriota 6562 . . . . . 6
73, 6nfcxfr 2571 . . . . 5
87nfel1 2584 . . . 4
9 nfv 1630 . . . . 5
10 nfsbc1v 3182 . . . . 5
119, 10nfan 1847 . . . 4
128, 11nfan 1847 . . 3
13 nfcsb1v 3285 . . . 4
1413a1i 11 . . 3
1510a1i 11 . . 3
163a1i 11 . . 3
17 sbceq1a 3173 . . . 4