MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotasv3dOLD Structured version   Unicode version

Theorem riotasv3dOLD 6599
Description: A property  ch holding for a representative of a single-valued class expression  C ( y ) (see e.g. reusv2 4729) also holds for its description binder  D (in the form of property  th). (Contributed by NM, 1-Feb-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
riotasv3dOLD.1  |-  ( ph  ->  A. x ph )
riotasv3dOLD.2  |-  ( ph  ->  A. y ph )
riotasv3dOLD.3  |-  ( ph  ->  ( th  ->  A. y th ) )
riotasv3dOLD.4  |-  ( ph  ->  D  =  ( iota_ x  e.  A A. y  e.  B  ( ps  ->  x  =  C ) ) )
riotasv3dOLD.5  |-  ( ph  ->  ( C  =  D  ->  ( ch  <->  th )
) )
riotasv3dOLD.6  |-  ( ph  ->  ( ( y  e.  B  /\  ps )  ->  ch ) )
Assertion
Ref Expression
riotasv3dOLD  |-  ( (
ph  /\  ( A  e.  V  /\  D  e.  A  /\  E. y  e.  B  ps )
)  ->  th )
Distinct variable groups:    x, y, A    x, B    x, C    ps, x
Allowed substitution hints:    ph( x, y)    ps( y)    ch( x, y)    th( x, y)    B( y)    C( y)    D( x, y)    V( x, y)

Proof of Theorem riotasv3dOLD
StepHypRef Expression
1 elex 2964 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
2 riotasv3dOLD.2 . . . . . . . 8  |-  ( ph  ->  A. y ph )
32nfi 1560 . . . . . . 7  |-  F/ y
ph
4 riotasv3dOLD.6 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( y  e.  B  /\  ps )  ->  ch ) )
54imp 419 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  B  /\  ps )
)  ->  ch )
65adantrl 697 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( A  e.  _V  /\  D  e.  A )  /\  (
y  e.  B  /\  ps ) ) )  ->  ch )
7 riotasv3dOLD.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. x ph )
8 riotasv3dOLD.4 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  D  =  ( iota_ x  e.  A A. y  e.  B  ( ps  ->  x  =  C ) ) )
97, 2, 8riotasvdOLD 6593 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  A  e.  _V )  /\  D  e.  A  /\  (
y  e.  B  /\  ps ) )  ->  D  =  C )
109eqcomd 2441 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  _V )  /\  D  e.  A  /\  (
y  e.  B  /\  ps ) )  ->  C  =  D )
11103exp 1152 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  e.  _V )  ->  ( D  e.  A  ->  (
( y  e.  B  /\  ps )  ->  C  =  D ) ) )
1211ex 424 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  e.  _V  ->  ( D  e.  A  ->  ( ( y  e.  B  /\  ps )  ->  C  =  D ) ) ) )
1312imp4c 575 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  e.  _V  /\  D  e.  A )  /\  (
y  e.  B  /\  ps ) )  ->  C  =  D ) )
14 riotasv3dOLD.5 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  =  D  ->  ( ch  <->  th )
) )
1513, 14syld 42 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A  e.  _V  /\  D  e.  A )  /\  (
y  e.  B  /\  ps ) )  ->  ( ch 
<->  th ) ) )
1615imp 419 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( A  e.  _V  /\  D  e.  A )  /\  (
y  e.  B  /\  ps ) ) )  -> 
( ch  <->  th )
)
176, 16mpbid 202 . . . . . . . . 9  |-  ( (
ph  /\  ( ( A  e.  _V  /\  D  e.  A )  /\  (
y  e.  B  /\  ps ) ) )  ->  th )
1817exp45 598 . . . . . . . 8  |-  ( ph  ->  ( ( A  e. 
_V  /\  D  e.  A )  ->  (
y  e.  B  -> 
( ps  ->  th )
) ) )
1918com23 74 . . . . . . 7  |-  ( ph  ->  ( y  e.  B  ->  ( ( A  e. 
_V  /\  D  e.  A )  ->  ( ps  ->  th ) ) ) )
203, 19ralrimi 2787 . . . . . 6  |-  ( ph  ->  A. y  e.  B  ( ( A  e. 
_V  /\  D  e.  A )  ->  ( ps  ->  th ) ) )
21 nfvd 1630 . . . . . . . 8  |-  ( ph  ->  F/ y  A  e. 
_V )
22 nfra1 2756 . . . . . . . . . . 11  |-  F/ y A. y  e.  B  ( ps  ->  x  =  C )
23 nfcv 2572 . . . . . . . . . . 11  |-  F/_ y A
2422, 23nfriota 6559 . . . . . . . . . 10  |-  F/_ y
( iota_ x  e.  A A. y  e.  B  ( ps  ->  x  =  C ) )
253, 8nfceqdf 2571 . . . . . . . . . 10  |-  ( ph  ->  ( F/_ y D  <->  F/_ y ( iota_ x  e.  A A. y  e.  B  ( ps  ->  x  =  C ) ) ) )
2624, 25mpbiri 225 . . . . . . . . 9  |-  ( ph  -> 
F/_ y D )
27 nfcvd 2573 . . . . . . . . 9  |-  ( ph  -> 
F/_ y A )
2826, 27nfeld 2587 . . . . . . . 8  |-  ( ph  ->  F/ y  D  e.  A )
2921, 28nfand 1843 . . . . . . 7  |-  ( ph  ->  F/ y ( A  e.  _V  /\  D  e.  A ) )
30 r19.21t 2791 . . . . . . 7  |-  ( F/ y ( A  e. 
_V  /\  D  e.  A )  ->  ( A. y  e.  B  ( ( A  e. 
_V  /\  D  e.  A )  ->  ( ps  ->  th ) )  <->  ( ( A  e.  _V  /\  D  e.  A )  ->  A. y  e.  B  ( ps  ->  th ) ) ) )
3129, 30syl 16 . . . . . 6  |-  ( ph  ->  ( A. y  e.  B  ( ( A  e.  _V  /\  D  e.  A )  ->  ( ps  ->  th ) )  <->  ( ( A  e.  _V  /\  D  e.  A )  ->  A. y  e.  B  ( ps  ->  th ) ) ) )
3220, 31mpbid 202 . . . . 5  |-  ( ph  ->  ( ( A  e. 
_V  /\  D  e.  A )  ->  A. y  e.  B  ( ps  ->  th ) ) )
33 riotasv3dOLD.3 . . . . . . 7  |-  ( ph  ->  ( th  ->  A. y th ) )
343, 33nfd 1782 . . . . . 6  |-  ( ph  ->  F/ y th )
35 r19.23t 2820 . . . . . 6  |-  ( F/ y th  ->  ( A. y  e.  B  ( ps  ->  th )  <->  ( E. y  e.  B  ps  ->  th ) ) )
3634, 35syl 16 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( ps  ->  th )  <->  ( E. y  e.  B  ps  ->  th ) ) )
3732, 36sylibd 206 . . . 4  |-  ( ph  ->  ( ( A  e. 
_V  /\  D  e.  A )  ->  ( E. y  e.  B  ps  ->  th ) ) )
3837exp3a 426 . . 3  |-  ( ph  ->  ( A  e.  _V  ->  ( D  e.  A  ->  ( E. y  e.  B  ps  ->  th )
) ) )
391, 38syl5 30 . 2  |-  ( ph  ->  ( A  e.  V  ->  ( D  e.  A  ->  ( E. y  e.  B  ps  ->  th )
) ) )
40393imp2 1168 1  |-  ( (
ph  /\  ( A  e.  V  /\  D  e.  A  /\  E. y  e.  B  ps )
)  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1549   F/wnf 1553    = wceq 1652    e. wcel 1725   F/_wnfc 2559   A.wral 2705   E.wrex 2706   _Vcvv 2956   iota_crio 6542
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-undef 6543  df-riota 6549
  Copyright terms: Public domain W3C validator