MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotasv3dOLD Unicode version

Theorem riotasv3dOLD 6354
Description: A property  ch holding for a representative of a single-valued class expression  C ( y ) (see e.g. reusv2 4540) also holds for its description binder  D (in the form of property  th). (Contributed by NM, 1-Feb-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
riotasv3dOLD.1  |-  ( ph  ->  A. x ph )
riotasv3dOLD.2  |-  ( ph  ->  A. y ph )
riotasv3dOLD.3  |-  ( ph  ->  ( th  ->  A. y th ) )
riotasv3dOLD.4  |-  ( ph  ->  D  =  ( iota_ x  e.  A A. y  e.  B  ( ps  ->  x  =  C ) ) )
riotasv3dOLD.5  |-  ( ph  ->  ( C  =  D  ->  ( ch  <->  th )
) )
riotasv3dOLD.6  |-  ( ph  ->  ( ( y  e.  B  /\  ps )  ->  ch ) )
Assertion
Ref Expression
riotasv3dOLD  |-  ( (
ph  /\  ( A  e.  V  /\  D  e.  A  /\  E. y  e.  B  ps )
)  ->  th )
Distinct variable groups:    x, y, A    x, B    x, C    ps, x
Allowed substitution hints:    ph( x, y)    ps( y)    ch( x, y)    th( x, y)    B( y)    C( y)    D( x, y)    V( x, y)

Proof of Theorem riotasv3dOLD
StepHypRef Expression
1 elex 2796 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
2 riotasv3dOLD.2 . . . . . . . 8  |-  ( ph  ->  A. y ph )
32nfi 1538 . . . . . . 7  |-  F/ y
ph
4 riotasv3dOLD.6 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( y  e.  B  /\  ps )  ->  ch ) )
54imp 418 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  B  /\  ps )
)  ->  ch )
65adantrl 696 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( A  e.  _V  /\  D  e.  A )  /\  (
y  e.  B  /\  ps ) ) )  ->  ch )
7 riotasv3dOLD.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. x ph )
8 riotasv3dOLD.4 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  D  =  ( iota_ x  e.  A A. y  e.  B  ( ps  ->  x  =  C ) ) )
97, 2, 8riotasvdOLD 6348 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  A  e.  _V )  /\  D  e.  A  /\  (
y  e.  B  /\  ps ) )  ->  D  =  C )
109eqcomd 2288 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  _V )  /\  D  e.  A  /\  (
y  e.  B  /\  ps ) )  ->  C  =  D )
11103exp 1150 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  e.  _V )  ->  ( D  e.  A  ->  (
( y  e.  B  /\  ps )  ->  C  =  D ) ) )
1211ex 423 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  e.  _V  ->  ( D  e.  A  ->  ( ( y  e.  B  /\  ps )  ->  C  =  D ) ) ) )
1312imp4c 574 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  e.  _V  /\  D  e.  A )  /\  (
y  e.  B  /\  ps ) )  ->  C  =  D ) )
14 riotasv3dOLD.5 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  =  D  ->  ( ch  <->  th )
) )
1513, 14syld 40 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A  e.  _V  /\  D  e.  A )  /\  (
y  e.  B  /\  ps ) )  ->  ( ch 
<->  th ) ) )
1615imp 418 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( A  e.  _V  /\  D  e.  A )  /\  (
y  e.  B  /\  ps ) ) )  -> 
( ch  <->  th )
)
176, 16mpbid 201 . . . . . . . . 9  |-  ( (
ph  /\  ( ( A  e.  _V  /\  D  e.  A )  /\  (
y  e.  B  /\  ps ) ) )  ->  th )
1817exp45 597 . . . . . . . 8  |-  ( ph  ->  ( ( A  e. 
_V  /\  D  e.  A )  ->  (
y  e.  B  -> 
( ps  ->  th )
) ) )
1918com23 72 . . . . . . 7  |-  ( ph  ->  ( y  e.  B  ->  ( ( A  e. 
_V  /\  D  e.  A )  ->  ( ps  ->  th ) ) ) )
203, 19ralrimi 2624 . . . . . 6  |-  ( ph  ->  A. y  e.  B  ( ( A  e. 
_V  /\  D  e.  A )  ->  ( ps  ->  th ) ) )
21 nfvd 1606 . . . . . . . 8  |-  ( ph  ->  F/ y  A  e. 
_V )
22 nfra1 2593 . . . . . . . . . . 11  |-  F/ y A. y  e.  B  ( ps  ->  x  =  C )
23 nfcv 2419 . . . . . . . . . . 11  |-  F/_ y A
2422, 23nfriota 6314 . . . . . . . . . 10  |-  F/_ y
( iota_ x  e.  A A. y  e.  B  ( ps  ->  x  =  C ) )
253, 8nfceqdf 2418 . . . . . . . . . 10  |-  ( ph  ->  ( F/_ y D  <->  F/_ y ( iota_ x  e.  A A. y  e.  B  ( ps  ->  x  =  C ) ) ) )
2624, 25mpbiri 224 . . . . . . . . 9  |-  ( ph  -> 
F/_ y D )
27 nfcvd 2420 . . . . . . . . 9  |-  ( ph  -> 
F/_ y A )
2826, 27nfeld 2434 . . . . . . . 8  |-  ( ph  ->  F/ y  D  e.  A )
2921, 28nfand 1763 . . . . . . 7  |-  ( ph  ->  F/ y ( A  e.  _V  /\  D  e.  A ) )
30 r19.21t 2628 . . . . . . 7  |-  ( F/ y ( A  e. 
_V  /\  D  e.  A )  ->  ( A. y  e.  B  ( ( A  e. 
_V  /\  D  e.  A )  ->  ( ps  ->  th ) )  <->  ( ( A  e.  _V  /\  D  e.  A )  ->  A. y  e.  B  ( ps  ->  th ) ) ) )
3129, 30syl 15 . . . . . 6  |-  ( ph  ->  ( A. y  e.  B  ( ( A  e.  _V  /\  D  e.  A )  ->  ( ps  ->  th ) )  <->  ( ( A  e.  _V  /\  D  e.  A )  ->  A. y  e.  B  ( ps  ->  th ) ) ) )
3220, 31mpbid 201 . . . . 5  |-  ( ph  ->  ( ( A  e. 
_V  /\  D  e.  A )  ->  A. y  e.  B  ( ps  ->  th ) ) )
33 riotasv3dOLD.3 . . . . . . 7  |-  ( ph  ->  ( th  ->  A. y th ) )
343, 33nfd 1746 . . . . . 6  |-  ( ph  ->  F/ y th )
35 r19.23t 2657 . . . . . 6  |-  ( F/ y th  ->  ( A. y  e.  B  ( ps  ->  th )  <->  ( E. y  e.  B  ps  ->  th ) ) )
3634, 35syl 15 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( ps  ->  th )  <->  ( E. y  e.  B  ps  ->  th ) ) )
3732, 36sylibd 205 . . . 4  |-  ( ph  ->  ( ( A  e. 
_V  /\  D  e.  A )  ->  ( E. y  e.  B  ps  ->  th ) ) )
3837exp3a 425 . . 3  |-  ( ph  ->  ( A  e.  _V  ->  ( D  e.  A  ->  ( E. y  e.  B  ps  ->  th )
) ) )
391, 38syl5 28 . 2  |-  ( ph  ->  ( A  e.  V  ->  ( D  e.  A  ->  ( E. y  e.  B  ps  ->  th )
) ) )
40393imp2 1166 1  |-  ( (
ph  /\  ( A  e.  V  /\  D  e.  A  /\  E. y  e.  B  ps )
)  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1527   F/wnf 1531    = wceq 1623    e. wcel 1684   F/_wnfc 2406   A.wral 2543   E.wrex 2544   _Vcvv 2788   iota_crio 6297
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-undef 6298  df-riota 6304
  Copyright terms: Public domain W3C validator