Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  risc Structured version   Unicode version

Theorem risc 26593
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
risc  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( R  ~=r  S  <->  E. f 
f  e.  ( R 
RngIso  S ) ) )
Distinct variable groups:    R, f    S, f

Proof of Theorem risc
StepHypRef Expression
1 isriscg 26591 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( R  ~=r  S  <->  ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  E. f  f  e.  ( R  RngIso  S ) ) ) )
21bianabs 851 1  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( R  ~=r  S  <->  E. f 
f  e.  ( R 
RngIso  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    e. wcel 1725   class class class wbr 4204  (class class class)co 6073   RingOpscrngo 21955    RngIso crngiso 26568    ~=r crisc 26569
This theorem is referenced by:  risci  26594
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-iota 5410  df-fv 5454  df-ov 6076  df-risc 26590
  Copyright terms: Public domain W3C validator