Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riscer Structured version   Unicode version

Theorem riscer 26618
Description: Ring isomorphism is an equivalence relation. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
riscer  |-  ~=r  Er  dom  ~=r

Proof of Theorem riscer
Dummy variables  f 
g  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-risc 26613 . . 3  |-  ~=r  =  { <. r ,  s
>.  |  ( (
r  e.  RingOps  /\  s  e.  RingOps )  /\  E. f  f  e.  (
r  RngIso  s ) ) }
21relopabi 5003 . 2  |-  Rel  ~=r
3 eqid 2438 . 2  |-  dom  ~=r  =  dom  ~=r
4 vex 2961 . . . . . . 7  |-  r  e. 
_V
5 vex 2961 . . . . . . 7  |-  s  e. 
_V
64, 5isrisc 26615 . . . . . 6  |-  ( r 
~=r  s  <->  ( (
r  e.  RingOps  /\  s  e.  RingOps )  /\  E. f  f  e.  (
r  RngIso  s ) ) )
7 rngoisocnv 26611 . . . . . . . . . 10  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  f  e.  ( r  RngIso  s ) )  ->  `' f  e.  ( s  RngIso  r ) )
873expia 1156 . . . . . . . . 9  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps )  ->  (
f  e.  ( r 
RngIso  s )  ->  `' f  e.  ( s  RngIso  r ) ) )
9 risci 26617 . . . . . . . . . . 11  |-  ( ( s  e.  RingOps  /\  r  e.  RingOps  /\  `' f  e.  ( s  RngIso  r ) )  ->  s  ~=r  r )
1093expia 1156 . . . . . . . . . 10  |-  ( ( s  e.  RingOps  /\  r  e.  RingOps )  ->  ( `' f  e.  (
s  RngIso  r )  -> 
s  ~=r  r )
)
1110ancoms 441 . . . . . . . . 9  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps )  ->  ( `' f  e.  (
s  RngIso  r )  -> 
s  ~=r  r )
)
128, 11syld 43 . . . . . . . 8  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps )  ->  (
f  e.  ( r 
RngIso  s )  ->  s  ~=r  r ) )
1312exlimdv 1647 . . . . . . 7  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps )  ->  ( E. f  f  e.  ( r  RngIso  s )  ->  s  ~=r  r
) )
1413imp 420 . . . . . 6  |-  ( ( ( r  e.  RingOps  /\  s  e.  RingOps )  /\  E. f  f  e.  ( r  RngIso  s ) )  ->  s  ~=r  r
)
156, 14sylbi 189 . . . . 5  |-  ( r 
~=r  s  ->  s  ~=r  r )
16 vex 2961 . . . . . . 7  |-  t  e. 
_V
175, 16isrisc 26615 . . . . . 6  |-  ( s 
~=r  t  <->  ( (
s  e.  RingOps  /\  t  e.  RingOps )  /\  E. g  g  e.  (
s  RngIso  t ) ) )
18 eeanv 1938 . . . . . . . . . . 11  |-  ( E. f E. g ( f  e.  ( r 
RngIso  s )  /\  g  e.  ( s  RngIso  t ) )  <->  ( E. f 
f  e.  ( r 
RngIso  s )  /\  E. g  g  e.  (
s  RngIso  t ) ) )
19 rngoisoco 26612 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  t  e.  RingOps )  /\  (
f  e.  ( r 
RngIso  s )  /\  g  e.  ( s  RngIso  t ) ) )  ->  (
g  o.  f )  e.  ( r  RngIso  t ) )
2019ex 425 . . . . . . . . . . . . 13  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  t  e.  RingOps )  ->  ( ( f  e.  ( r  RngIso  s )  /\  g  e.  ( s  RngIso  t ) )  ->  ( g  o.  f )  e.  ( r  RngIso  t ) ) )
21 risci 26617 . . . . . . . . . . . . . . 15  |-  ( ( r  e.  RingOps  /\  t  e.  RingOps  /\  ( g  o.  f )  e.  ( r  RngIso  t ) )  ->  r  ~=r  t
)
22213expia 1156 . . . . . . . . . . . . . 14  |-  ( ( r  e.  RingOps  /\  t  e.  RingOps )  ->  (
( g  o.  f
)  e.  ( r 
RngIso  t )  ->  r  ~=r  t ) )
23223adant2 977 . . . . . . . . . . . . 13  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  t  e.  RingOps )  ->  ( ( g  o.  f )  e.  ( r  RngIso  t )  ->  r  ~=r  t
) )
2420, 23syld 43 . . . . . . . . . . . 12  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  t  e.  RingOps )  ->  ( ( f  e.  ( r  RngIso  s )  /\  g  e.  ( s  RngIso  t ) )  ->  r  ~=r  t ) )
2524exlimdvv 1648 . . . . . . . . . . 11  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  t  e.  RingOps )  ->  ( E. f E. g ( f  e.  ( r  RngIso  s )  /\  g  e.  ( s  RngIso  t ) )  ->  r  ~=r  t
) )
2618, 25syl5bir 211 . . . . . . . . . 10  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  t  e.  RingOps )  ->  ( ( E. f  f  e.  ( r  RngIso  s )  /\  E. g  g  e.  ( s  RngIso  t ) )  ->  r  ~=r  t
) )
27263expb 1155 . . . . . . . . 9  |-  ( ( r  e.  RingOps  /\  (
s  e.  RingOps  /\  t  e.  RingOps ) )  -> 
( ( E. f 
f  e.  ( r 
RngIso  s )  /\  E. g  g  e.  (
s  RngIso  t ) )  ->  r  ~=r  t
) )
2827adantlr 697 . . . . . . . 8  |-  ( ( ( r  e.  RingOps  /\  s  e.  RingOps )  /\  ( s  e.  RingOps  /\  t  e.  RingOps ) )  ->  ( ( E. f  f  e.  ( r  RngIso  s )  /\  E. g  g  e.  ( s  RngIso  t ) )  ->  r  ~=r  t
) )
2928imp 420 . . . . . . 7  |-  ( ( ( ( r  e.  RingOps 
/\  s  e.  RingOps )  /\  ( s  e.  RingOps 
/\  t  e.  RingOps ) )  /\  ( E. f  f  e.  ( r  RngIso  s )  /\  E. g  g  e.  ( s  RngIso  t ) ) )  ->  r  ~=r  t )
3029an4s 801 . . . . . 6  |-  ( ( ( ( r  e.  RingOps 
/\  s  e.  RingOps )  /\  E. f  f  e.  ( r  RngIso  s ) )  /\  (
( s  e.  RingOps  /\  t  e.  RingOps )  /\  E. g  g  e.  ( s  RngIso  t ) ) )  ->  r  ~=r  t )
316, 17, 30syl2anb 467 . . . . 5  |-  ( ( r  ~=r  s  /\  s  ~=r  t )  -> 
r  ~=r  t )
3215, 31pm3.2i 443 . . . 4  |-  ( ( r  ~=r  s  ->  s 
~=r  r )  /\  ( ( r  ~=r  s  /\  s  ~=r  t
)  ->  r  ~=r  t ) )
3332ax-gen 1556 . . 3  |-  A. t
( ( r  ~=r  s  ->  s  ~=r  r
)  /\  ( (
r  ~=r  s  /\  s  ~=r  t )  -> 
r  ~=r  t )
)
3433gen2 1557 . 2  |-  A. r A. s A. t ( ( r  ~=r  s  ->  s  ~=r  r )  /\  ( ( r  ~=r  s  /\  s  ~=r  t
)  ->  r  ~=r  t ) )
35 dfer2 6909 . 2  |-  (  ~=r  Er 
dom  ~=r  <->  ( Rel  ~=r  /\  dom  ~=r  =  dom  ~=r  /\  A. r A. s A. t
( ( r  ~=r  s  ->  s  ~=r  r
)  /\  ( (
r  ~=r  s  /\  s  ~=r  t )  -> 
r  ~=r  t )
) ) )
362, 3, 34, 35mpbir3an 1137 1  |-  ~=r  Er  dom  ~=r
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726   class class class wbr 4215   `'ccnv 4880   dom cdm 4881    o. ccom 4885   Rel wrel 4886  (class class class)co 6084    Er wer 6905   RingOpscrngo 21968    RngIso crngiso 26591    ~=r crisc 26592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-er 6908  df-map 7023  df-grpo 21784  df-gid 21785  df-ablo 21875  df-ass 21906  df-exid 21908  df-mgm 21912  df-sgr 21924  df-mndo 21931  df-rngo 21969  df-rngohom 26593  df-rngoiso 26606  df-risc 26613
  Copyright terms: Public domain W3C validator