MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim2 Unicode version

Theorem rlim2 12273
Description: Rewrite rlim 12272 for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlim2.1  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
rlim2.2  |-  ( ph  ->  A  C_  RR )
rlim2.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
rlim2  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
Distinct variable groups:    x, y,
z, A    x, B, y    x, C, y, z    ph, x, y
Allowed substitution hints:    ph( z)    B( z)

Proof of Theorem rlim2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
2 eqid 2430 . . . . 5  |-  ( z  e.  A  |->  B )  =  ( z  e.  A  |->  B )
32fmpt 5876 . . . 4  |-  ( A. z  e.  A  B  e.  CC  <->  ( z  e.  A  |->  B ) : A --> CC )
41, 3sylib 189 . . 3  |-  ( ph  ->  ( z  e.  A  |->  B ) : A --> CC )
5 rlim2.2 . . 3  |-  ( ph  ->  A  C_  RR )
6 eqidd 2431 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( z  e.  A  |->  B ) `  w
)  =  ( ( z  e.  A  |->  B ) `  w ) )
74, 5, 6rlim 12272 . 2  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. w  e.  A  ( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
) ) ) )
8 rlim2.3 . . 3  |-  ( ph  ->  C  e.  CC )
98biantrurd 495 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. w  e.  A  ( y  <_  w  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w
)  -  C ) )  <  x )  <-> 
( C  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR  A. w  e.  A  (
y  <_  w  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w
)  -  C ) )  <  x ) ) ) )
10 nfv 1629 . . . . . . 7  |-  F/ z  y  <_  w
11 nfcv 2566 . . . . . . . . 9  |-  F/_ z abs
12 nffvmpt1 5722 . . . . . . . . . 10  |-  F/_ z
( ( z  e.  A  |->  B ) `  w )
13 nfcv 2566 . . . . . . . . . 10  |-  F/_ z  -
14 nfcv 2566 . . . . . . . . . 10  |-  F/_ z C
1512, 13, 14nfov 6090 . . . . . . . . 9  |-  F/_ z
( ( ( z  e.  A  |->  B ) `
 w )  -  C )
1611, 15nffv 5721 . . . . . . . 8  |-  F/_ z
( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )
17 nfcv 2566 . . . . . . . 8  |-  F/_ z  <
18 nfcv 2566 . . . . . . . 8  |-  F/_ z
x
1916, 17, 18nfbr 4243 . . . . . . 7  |-  F/ z ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
2010, 19nfim 1832 . . . . . 6  |-  F/ z ( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
)
21 nfv 1629 . . . . . 6  |-  F/ w
( y  <_  z  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x
)
22 breq2 4203 . . . . . . 7  |-  ( w  =  z  ->  (
y  <_  w  <->  y  <_  z ) )
23 fveq2 5714 . . . . . . . . . 10  |-  ( w  =  z  ->  (
( z  e.  A  |->  B ) `  w
)  =  ( ( z  e.  A  |->  B ) `  z ) )
2423oveq1d 6082 . . . . . . . . 9  |-  ( w  =  z  ->  (
( ( z  e.  A  |->  B ) `  w )  -  C
)  =  ( ( ( z  e.  A  |->  B ) `  z
)  -  C ) )
2524fveq2d 5718 . . . . . . . 8  |-  ( w  =  z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w )  -  C ) )  =  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) ) )
2625breq1d 4209 . . . . . . 7  |-  ( w  =  z  ->  (
( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x  <->  ( abs `  ( ( ( z  e.  A  |->  B ) `  z
)  -  C ) )  <  x ) )
2722, 26imbi12d 312 . . . . . 6  |-  ( w  =  z  ->  (
( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
)  <->  ( y  <_ 
z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `
 z )  -  C ) )  < 
x ) ) )
2820, 21, 27cbvral 2915 . . . . 5  |-  ( A. w  e.  A  (
y  <_  w  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w
)  -  C ) )  <  x )  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x
) )
292fvmpt2 5798 . . . . . . . . . . 11  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( ( z  e.  A  |->  B ) `  z )  =  B )
3029oveq1d 6082 . . . . . . . . . 10  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( ( ( z  e.  A  |->  B ) `
 z )  -  C )  =  ( B  -  C ) )
3130fveq2d 5718 . . . . . . . . 9  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  =  ( abs `  ( B  -  C ) ) )
3231breq1d 4209 . . . . . . . 8  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x  <->  ( abs `  ( B  -  C ) )  <  x ) )
3332imbi2d 308 . . . . . . 7  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( ( y  <_ 
z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `
 z )  -  C ) )  < 
x )  <->  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
3433ralimiaa 2767 . . . . . 6  |-  ( A. z  e.  A  B  e.  CC  ->  A. z  e.  A  ( (
y  <_  z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  z
)  -  C ) )  <  x )  <-> 
( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
35 ralbi 2829 . . . . . 6  |-  ( A. z  e.  A  (
( y  <_  z  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x
)  <->  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) )  ->  ( A. z  e.  A  ( y  <_  z  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x
)  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
361, 34, 353syl 19 . . . . 5  |-  ( ph  ->  ( A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `
 z )  -  C ) )  < 
x )  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
3728, 36syl5bb 249 . . . 4  |-  ( ph  ->  ( A. w  e.  A  ( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
)  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
3837rexbidv 2713 . . 3  |-  ( ph  ->  ( E. y  e.  RR  A. w  e.  A  ( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
)  <->  E. y  e.  RR  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
3938ralbidv 2712 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. w  e.  A  ( y  <_  w  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w
)  -  C ) )  <  x )  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
407, 9, 393bitr2d 273 1  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1725   A.wral 2692   E.wrex 2693    C_ wss 3307   class class class wbr 4199    e. cmpt 4253   -->wf 5436   ` cfv 5440  (class class class)co 6067   CCcc 8972   RRcr 8973    < clt 9104    <_ cle 9105    - cmin 9275   RR+crp 10596   abscabs 12022    ~~> r crli 12262
This theorem is referenced by:  rlim2lt  12274  rlim3  12275  rlim0  12285  rlimi  12290  rlimconst  12321  climrlim2  12324  rlimcn1  12365  rlimcn2  12367  chtppilim  21152  pntlem3  21286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-cnex 9030  ax-resscn 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-pm 7007  df-rlim 12266
  Copyright terms: Public domain W3C validator