MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim2 Unicode version

Theorem rlim2 11986
Description: Rewrite rlim 11985 for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlim2.1  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
rlim2.2  |-  ( ph  ->  A  C_  RR )
rlim2.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
rlim2  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
Distinct variable groups:    x, y,
z, A    x, B, y    x, C, y, z    ph, x, y
Allowed substitution hints:    ph( z)    B( z)

Proof of Theorem rlim2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
2 eqid 2296 . . . . 5  |-  ( z  e.  A  |->  B )  =  ( z  e.  A  |->  B )
32fmpt 5697 . . . 4  |-  ( A. z  e.  A  B  e.  CC  <->  ( z  e.  A  |->  B ) : A --> CC )
41, 3sylib 188 . . 3  |-  ( ph  ->  ( z  e.  A  |->  B ) : A --> CC )
5 rlim2.2 . . 3  |-  ( ph  ->  A  C_  RR )
6 eqidd 2297 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( z  e.  A  |->  B ) `  w
)  =  ( ( z  e.  A  |->  B ) `  w ) )
74, 5, 6rlim 11985 . 2  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. w  e.  A  ( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
) ) ) )
8 rlim2.3 . . 3  |-  ( ph  ->  C  e.  CC )
98biantrurd 494 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. w  e.  A  ( y  <_  w  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w
)  -  C ) )  <  x )  <-> 
( C  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR  A. w  e.  A  (
y  <_  w  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w
)  -  C ) )  <  x ) ) ) )
10 nfv 1609 . . . . . . 7  |-  F/ z  y  <_  w
11 nfcv 2432 . . . . . . . . 9  |-  F/_ z abs
12 nfmpt1 4125 . . . . . . . . . . 11  |-  F/_ z
( z  e.  A  |->  B )
13 nfcv 2432 . . . . . . . . . . 11  |-  F/_ z
w
1412, 13nffv 5548 . . . . . . . . . 10  |-  F/_ z
( ( z  e.  A  |->  B ) `  w )
15 nfcv 2432 . . . . . . . . . 10  |-  F/_ z  -
16 nfcv 2432 . . . . . . . . . 10  |-  F/_ z C
1714, 15, 16nfov 5897 . . . . . . . . 9  |-  F/_ z
( ( ( z  e.  A  |->  B ) `
 w )  -  C )
1811, 17nffv 5548 . . . . . . . 8  |-  F/_ z
( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )
19 nfcv 2432 . . . . . . . 8  |-  F/_ z  <
20 nfcv 2432 . . . . . . . 8  |-  F/_ z
x
2118, 19, 20nfbr 4083 . . . . . . 7  |-  F/ z ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
2210, 21nfim 1781 . . . . . 6  |-  F/ z ( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
)
23 nfv 1609 . . . . . 6  |-  F/ w
( y  <_  z  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x
)
24 breq2 4043 . . . . . . 7  |-  ( w  =  z  ->  (
y  <_  w  <->  y  <_  z ) )
25 fveq2 5541 . . . . . . . . . 10  |-  ( w  =  z  ->  (
( z  e.  A  |->  B ) `  w
)  =  ( ( z  e.  A  |->  B ) `  z ) )
2625oveq1d 5889 . . . . . . . . 9  |-  ( w  =  z  ->  (
( ( z  e.  A  |->  B ) `  w )  -  C
)  =  ( ( ( z  e.  A  |->  B ) `  z
)  -  C ) )
2726fveq2d 5545 . . . . . . . 8  |-  ( w  =  z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w )  -  C ) )  =  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) ) )
2827breq1d 4049 . . . . . . 7  |-  ( w  =  z  ->  (
( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x  <->  ( abs `  ( ( ( z  e.  A  |->  B ) `  z
)  -  C ) )  <  x ) )
2924, 28imbi12d 311 . . . . . 6  |-  ( w  =  z  ->  (
( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
)  <->  ( y  <_ 
z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `
 z )  -  C ) )  < 
x ) ) )
3022, 23, 29cbvral 2773 . . . . 5  |-  ( A. w  e.  A  (
y  <_  w  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w
)  -  C ) )  <  x )  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x
) )
312fvmpt2 5624 . . . . . . . . . . 11  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( ( z  e.  A  |->  B ) `  z )  =  B )
3231oveq1d 5889 . . . . . . . . . 10  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( ( ( z  e.  A  |->  B ) `
 z )  -  C )  =  ( B  -  C ) )
3332fveq2d 5545 . . . . . . . . 9  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  =  ( abs `  ( B  -  C ) ) )
3433breq1d 4049 . . . . . . . 8  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x  <->  ( abs `  ( B  -  C ) )  <  x ) )
3534imbi2d 307 . . . . . . 7  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( ( y  <_ 
z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `
 z )  -  C ) )  < 
x )  <->  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
3635ralimiaa 2630 . . . . . 6  |-  ( A. z  e.  A  B  e.  CC  ->  A. z  e.  A  ( (
y  <_  z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  z
)  -  C ) )  <  x )  <-> 
( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
37 ralbi 2692 . . . . . 6  |-  ( A. z  e.  A  (
( y  <_  z  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x
)  <->  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) )  ->  ( A. z  e.  A  ( y  <_  z  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x
)  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
381, 36, 373syl 18 . . . . 5  |-  ( ph  ->  ( A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `
 z )  -  C ) )  < 
x )  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
3930, 38syl5bb 248 . . . 4  |-  ( ph  ->  ( A. w  e.  A  ( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
)  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
4039rexbidv 2577 . . 3  |-  ( ph  ->  ( E. y  e.  RR  A. w  e.  A  ( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
)  <->  E. y  e.  RR  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
4140ralbidv 2576 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. w  e.  A  ( y  <_  w  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w
)  -  C ) )  <  x )  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
427, 9, 413bitr2d 272 1  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752    < clt 8883    <_ cle 8884    - cmin 9053   RR+crp 10370   abscabs 11735    ~~> r crli 11975
This theorem is referenced by:  rlim2lt  11987  rlim3  11988  rlim0  11998  rlimi  12003  rlimconst  12034  climrlim2  12037  rlimcn1  12078  rlimcn2  12080  chtppilim  20640  pntlem3  20774
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-pm 6791  df-rlim 11979
  Copyright terms: Public domain W3C validator