MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim2lt Unicode version

Theorem rlim2lt 12219
Description: Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.)
Hypotheses
Ref Expression
rlim2.1  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
rlim2.2  |-  ( ph  ->  A  C_  RR )
rlim2.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
rlim2lt  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  < 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
Distinct variable groups:    x, y,
z, A    x, B, y    x, C, y, z    ph, x, y
Allowed substitution hints:    ph( z)    B( z)

Proof of Theorem rlim2lt
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
2 rlim2.2 . . . 4  |-  ( ph  ->  A  C_  RR )
3 rlim2.3 . . . 4  |-  ( ph  ->  C  e.  CC )
41, 2, 3rlim2 12218 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
5 simplr 732 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  y  e.  RR )
6 simpl 444 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  y  e.  RR )  ->  A  C_  RR )
76sselda 3292 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  z  e.  RR )
8 ltle 9097 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  <  z  ->  y  <_  z )
)
95, 7, 8syl2anc 643 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  ( y  <  z  ->  y  <_  z ) )
109imim1d 71 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  ( (
y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  -> 
( y  <  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
1110ralimdva 2728 . . . . . 6  |-  ( ( A  C_  RR  /\  y  e.  RR )  ->  ( A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  ->  A. z  e.  A  ( y  <  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
122, 11sylan 458 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. z  e.  A  (
y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  A. z  e.  A  ( y  <  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
1312reximdva 2762 . . . 4  |-  ( ph  ->  ( E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  E. y  e.  RR  A. z  e.  A  ( y  < 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
1413ralimdv 2729 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  < 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
154, 14sylbid 207 . 2  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  ->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  (
y  <  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
16 peano2re 9172 . . . . . . 7  |-  ( y  e.  RR  ->  (
y  +  1 )  e.  RR )
1716adantl 453 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( y  +  1 )  e.  RR )
18 ltp1 9781 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  y  <  ( y  +  1 ) )
1918ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  y  <  ( y  +  1 ) )
2016ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  ( y  +  1 )  e.  RR )
21 ltletr 9100 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  ( y  +  1 )  e.  RR  /\  z  e.  RR )  ->  ( ( y  < 
( y  +  1 )  /\  ( y  +  1 )  <_ 
z )  ->  y  <  z ) )
225, 20, 7, 21syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  ( (
y  <  ( y  +  1 )  /\  ( y  +  1 )  <_  z )  ->  y  <  z ) )
2319, 22mpand 657 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  ( (
y  +  1 )  <_  z  ->  y  <  z ) )
2423imim1d 71 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  ( (
y  <  z  ->  ( abs `  ( B  -  C ) )  <  x )  -> 
( ( y  +  1 )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
2524ralimdva 2728 . . . . . . 7  |-  ( ( A  C_  RR  /\  y  e.  RR )  ->  ( A. z  e.  A  ( y  <  z  ->  ( abs `  ( B  -  C )
)  <  x )  ->  A. z  e.  A  ( ( y  +  1 )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
262, 25sylan 458 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. z  e.  A  (
y  <  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  A. z  e.  A  ( ( y  +  1 )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
27 breq1 4157 . . . . . . . . 9  |-  ( w  =  ( y  +  1 )  ->  (
w  <_  z  <->  ( y  +  1 )  <_ 
z ) )
2827imbi1d 309 . . . . . . . 8  |-  ( w  =  ( y  +  1 )  ->  (
( w  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  <->  ( ( y  +  1 )  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
2928ralbidv 2670 . . . . . . 7  |-  ( w  =  ( y  +  1 )  ->  ( A. z  e.  A  ( w  <_  z  -> 
( abs `  ( B  -  C )
)  <  x )  <->  A. z  e.  A  ( ( y  +  1 )  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
3029rspcev 2996 . . . . . 6  |-  ( ( ( y  +  1 )  e.  RR  /\  A. z  e.  A  ( ( y  +  1 )  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) )  ->  E. w  e.  RR  A. z  e.  A  ( w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) )
3117, 26, 30ee12an 1369 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. z  e.  A  (
y  <  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  E. w  e.  RR  A. z  e.  A  ( w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
3231rexlimdva 2774 . . . 4  |-  ( ph  ->  ( E. y  e.  RR  A. z  e.  A  ( y  < 
z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  E. w  e.  RR  A. z  e.  A  ( w  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
3332ralimdv 2729 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <  z  -> 
( abs `  ( B  -  C )
)  <  x )  ->  A. x  e.  RR+  E. w  e.  RR  A. z  e.  A  (
w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
341, 2, 3rlim2 12218 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. w  e.  RR  A. z  e.  A  ( w  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
3533, 34sylibrd 226 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <  z  -> 
( abs `  ( B  -  C )
)  <  x )  ->  ( z  e.  A  |->  B )  ~~> r  C
) )
3615, 35impbid 184 1  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  < 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650   E.wrex 2651    C_ wss 3264   class class class wbr 4154    e. cmpt 4208   ` cfv 5395  (class class class)co 6021   CCcc 8922   RRcr 8923   1c1 8925    + caddc 8927    < clt 9054    <_ cle 9055    - cmin 9224   RR+crp 10545   abscabs 11967    ~~> r crli 12207
This theorem is referenced by:  rlim0lt  12231  rlimcnp  20672  xrlimcnp  20675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-po 4445  df-so 4446  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-riota 6486  df-er 6842  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-rlim 12211
  Copyright terms: Public domain W3C validator