MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim3 Structured version   Unicode version

Theorem rlim3 12294
Description: Restrict the range of the domain bound to reals greater than some  D  e.  RR. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlim2.1  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
rlim2.2  |-  ( ph  ->  A  C_  RR )
rlim2.3  |-  ( ph  ->  C  e.  CC )
rlim3.4  |-  ( ph  ->  D  e.  RR )
Assertion
Ref Expression
rlim3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
Distinct variable groups:    x, y,
z, A    x, B, y    x, C, y, z    ph, x, y    y, D, z
Allowed substitution hints:    ph( z)    B( z)    D( x)

Proof of Theorem rlim3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
2 rlim2.2 . . . 4  |-  ( ph  ->  A  C_  RR )
3 rlim2.3 . . . 4  |-  ( ph  ->  C  e.  CC )
41, 2, 3rlim2 12292 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. w  e.  RR  A. z  e.  A  ( w  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
5 simpr 449 . . . . . . . 8  |-  ( (
ph  /\  w  e.  RR )  ->  w  e.  RR )
6 rlim3.4 . . . . . . . . 9  |-  ( ph  ->  D  e.  RR )
76adantr 453 . . . . . . . 8  |-  ( (
ph  /\  w  e.  RR )  ->  D  e.  RR )
8 ifcl 3777 . . . . . . . 8  |-  ( ( w  e.  RR  /\  D  e.  RR )  ->  if ( D  <_  w ,  w ,  D )  e.  RR )
95, 7, 8syl2anc 644 . . . . . . 7  |-  ( (
ph  /\  w  e.  RR )  ->  if ( D  <_  w ,  w ,  D )  e.  RR )
10 max1 10775 . . . . . . . 8  |-  ( ( D  e.  RR  /\  w  e.  RR )  ->  D  <_  if ( D  <_  w ,  w ,  D ) )
116, 10sylan 459 . . . . . . 7  |-  ( (
ph  /\  w  e.  RR )  ->  D  <_  if ( D  <_  w ,  w ,  D ) )
12 elicopnf 11002 . . . . . . . 8  |-  ( D  e.  RR  ->  ( if ( D  <_  w ,  w ,  D )  e.  ( D [,)  +oo )  <->  ( if ( D  <_  w ,  w ,  D )  e.  RR  /\  D  <_  if ( D  <_  w ,  w ,  D ) ) ) )
137, 12syl 16 . . . . . . 7  |-  ( (
ph  /\  w  e.  RR )  ->  ( if ( D  <_  w ,  w ,  D )  e.  ( D [,)  +oo )  <->  ( if ( D  <_  w ,  w ,  D )  e.  RR  /\  D  <_  if ( D  <_  w ,  w ,  D ) ) ) )
149, 11, 13mpbir2and 890 . . . . . 6  |-  ( (
ph  /\  w  e.  RR )  ->  if ( D  <_  w ,  w ,  D )  e.  ( D [,)  +oo ) )
152, 6jca 520 . . . . . . 7  |-  ( ph  ->  ( A  C_  RR  /\  D  e.  RR ) )
16 simpllr 737 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  D  e.  RR )
17 simplr 733 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  w  e.  RR )
18 max2 10777 . . . . . . . . . . 11  |-  ( ( D  e.  RR  /\  w  e.  RR )  ->  w  <_  if ( D  <_  w ,  w ,  D ) )
1916, 17, 18syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  w  <_  if ( D  <_  w ,  w ,  D ) )
2017, 16, 8syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  if ( D  <_  w ,  w ,  D )  e.  RR )
21 simpll 732 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  ->  A  C_  RR )
2221sselda 3350 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  z  e.  RR )
23 letr 9169 . . . . . . . . . . 11  |-  ( ( w  e.  RR  /\  if ( D  <_  w ,  w ,  D )  e.  RR  /\  z  e.  RR )  ->  (
( w  <_  if ( D  <_  w ,  w ,  D )  /\  if ( D  <_  w ,  w ,  D )  <_  z
)  ->  w  <_  z ) )
2417, 20, 22, 23syl3anc 1185 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  ( (
w  <_  if ( D  <_  w ,  w ,  D )  /\  if ( D  <_  w ,  w ,  D )  <_  z )  ->  w  <_  z ) )
2519, 24mpand 658 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  w  <_  z ) )
2625imim1d 72 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  ( (
w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  -> 
( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
2726ralimdva 2786 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  ->  ( A. z  e.  A  ( w  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  A. z  e.  A  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C ) )  < 
x ) ) )
2815, 27sylan 459 . . . . . 6  |-  ( (
ph  /\  w  e.  RR )  ->  ( A. z  e.  A  (
w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  A. z  e.  A  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
29 breq1 4217 . . . . . . . . 9  |-  ( y  =  if ( D  <_  w ,  w ,  D )  ->  (
y  <_  z  <->  if ( D  <_  w ,  w ,  D )  <_  z
) )
3029imbi1d 310 . . . . . . . 8  |-  ( y  =  if ( D  <_  w ,  w ,  D )  ->  (
( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  <->  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
3130ralbidv 2727 . . . . . . 7  |-  ( y  =  if ( D  <_  w ,  w ,  D )  ->  ( A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  <->  A. z  e.  A  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
3231rspcev 3054 . . . . . 6  |-  ( ( if ( D  <_  w ,  w ,  D )  e.  ( D [,)  +oo )  /\  A. z  e.  A  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
)  ->  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
)
3314, 28, 32ee12an 1373 . . . . 5  |-  ( (
ph  /\  w  e.  RR )  ->  ( A. z  e.  A  (
w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
3433rexlimdva 2832 . . . 4  |-  ( ph  ->  ( E. w  e.  RR  A. z  e.  A  ( w  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
3534ralimdv 2787 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. w  e.  RR  A. z  e.  A  ( w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
364, 35sylbid 208 . 2  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  ->  A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
37 pnfxr 10715 . . . . . 6  |-  +oo  e.  RR*
38 icossre 10993 . . . . . 6  |-  ( ( D  e.  RR  /\  +oo 
e.  RR* )  ->  ( D [,)  +oo )  C_  RR )
396, 37, 38sylancl 645 . . . . 5  |-  ( ph  ->  ( D [,)  +oo )  C_  RR )
40 ssrexv 3410 . . . . 5  |-  ( ( D [,)  +oo )  C_  RR  ->  ( E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4139, 40syl 16 . . . 4  |-  ( ph  ->  ( E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  ->  E. y  e.  RR  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
4241ralimdv 2787 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  ->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  (
y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
431, 2, 3rlim2 12292 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4442, 43sylibrd 227 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  ->  ( z  e.  A  |->  B )  ~~> r  C
) )
4536, 44impbid 185 1  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708    C_ wss 3322   ifcif 3741   class class class wbr 4214    e. cmpt 4268   ` cfv 5456  (class class class)co 6083   CCcc 8990   RRcr 8991    +oocpnf 9119   RR*cxr 9121    < clt 9122    <_ cle 9123    - cmin 9293   RR+crp 10614   [,)cico 10920   abscabs 12041    ~~> r crli 12281
This theorem is referenced by:  rlimresb  12361  rlimsqzlem  12444  rlimcnp  20806
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-pre-lttri 9066  ax-pre-lttrn 9067
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-po 4505  df-so 4506  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-er 6907  df-pm 7023  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-ico 10924  df-rlim 12285
  Copyright terms: Public domain W3C validator