MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim3 Unicode version

Theorem rlim3 11972
Description: Restrict the range of the domain bound to reals greater than some  D  e.  RR. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlim2.1  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
rlim2.2  |-  ( ph  ->  A  C_  RR )
rlim2.3  |-  ( ph  ->  C  e.  CC )
rlim3.4  |-  ( ph  ->  D  e.  RR )
Assertion
Ref Expression
rlim3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
Distinct variable groups:    x, y,
z, A    x, B, y    x, C, y, z    ph, x, y    y, D, z
Allowed substitution hints:    ph( z)    B( z)    D( x)

Proof of Theorem rlim3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
2 rlim2.2 . . . 4  |-  ( ph  ->  A  C_  RR )
3 rlim2.3 . . . 4  |-  ( ph  ->  C  e.  CC )
41, 2, 3rlim2 11970 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. w  e.  RR  A. z  e.  A  ( w  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
5 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  w  e.  RR )  ->  w  e.  RR )
6 rlim3.4 . . . . . . . . 9  |-  ( ph  ->  D  e.  RR )
76adantr 451 . . . . . . . 8  |-  ( (
ph  /\  w  e.  RR )  ->  D  e.  RR )
8 ifcl 3601 . . . . . . . 8  |-  ( ( w  e.  RR  /\  D  e.  RR )  ->  if ( D  <_  w ,  w ,  D )  e.  RR )
95, 7, 8syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  w  e.  RR )  ->  if ( D  <_  w ,  w ,  D )  e.  RR )
10 max1 10514 . . . . . . . 8  |-  ( ( D  e.  RR  /\  w  e.  RR )  ->  D  <_  if ( D  <_  w ,  w ,  D ) )
116, 10sylan 457 . . . . . . 7  |-  ( (
ph  /\  w  e.  RR )  ->  D  <_  if ( D  <_  w ,  w ,  D ) )
12 elicopnf 10739 . . . . . . . 8  |-  ( D  e.  RR  ->  ( if ( D  <_  w ,  w ,  D )  e.  ( D [,)  +oo )  <->  ( if ( D  <_  w ,  w ,  D )  e.  RR  /\  D  <_  if ( D  <_  w ,  w ,  D ) ) ) )
137, 12syl 15 . . . . . . 7  |-  ( (
ph  /\  w  e.  RR )  ->  ( if ( D  <_  w ,  w ,  D )  e.  ( D [,)  +oo )  <->  ( if ( D  <_  w ,  w ,  D )  e.  RR  /\  D  <_  if ( D  <_  w ,  w ,  D ) ) ) )
149, 11, 13mpbir2and 888 . . . . . 6  |-  ( (
ph  /\  w  e.  RR )  ->  if ( D  <_  w ,  w ,  D )  e.  ( D [,)  +oo ) )
152, 6jca 518 . . . . . . 7  |-  ( ph  ->  ( A  C_  RR  /\  D  e.  RR ) )
16 simpllr 735 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  D  e.  RR )
17 simplr 731 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  w  e.  RR )
18 max2 10516 . . . . . . . . . . 11  |-  ( ( D  e.  RR  /\  w  e.  RR )  ->  w  <_  if ( D  <_  w ,  w ,  D ) )
1916, 17, 18syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  w  <_  if ( D  <_  w ,  w ,  D ) )
2017, 16, 8syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  if ( D  <_  w ,  w ,  D )  e.  RR )
21 simpll 730 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  ->  A  C_  RR )
2221sselda 3180 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  z  e.  RR )
23 letr 8914 . . . . . . . . . . 11  |-  ( ( w  e.  RR  /\  if ( D  <_  w ,  w ,  D )  e.  RR  /\  z  e.  RR )  ->  (
( w  <_  if ( D  <_  w ,  w ,  D )  /\  if ( D  <_  w ,  w ,  D )  <_  z
)  ->  w  <_  z ) )
2417, 20, 22, 23syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  ( (
w  <_  if ( D  <_  w ,  w ,  D )  /\  if ( D  <_  w ,  w ,  D )  <_  z )  ->  w  <_  z ) )
2519, 24mpand 656 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  w  <_  z ) )
2625imim1d 69 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  ( (
w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  -> 
( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
2726ralimdva 2621 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  ->  ( A. z  e.  A  ( w  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  A. z  e.  A  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C ) )  < 
x ) ) )
2815, 27sylan 457 . . . . . 6  |-  ( (
ph  /\  w  e.  RR )  ->  ( A. z  e.  A  (
w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  A. z  e.  A  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
29 breq1 4026 . . . . . . . . 9  |-  ( y  =  if ( D  <_  w ,  w ,  D )  ->  (
y  <_  z  <->  if ( D  <_  w ,  w ,  D )  <_  z
) )
3029imbi1d 308 . . . . . . . 8  |-  ( y  =  if ( D  <_  w ,  w ,  D )  ->  (
( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  <->  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
3130ralbidv 2563 . . . . . . 7  |-  ( y  =  if ( D  <_  w ,  w ,  D )  ->  ( A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  <->  A. z  e.  A  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
3231rspcev 2884 . . . . . 6  |-  ( ( if ( D  <_  w ,  w ,  D )  e.  ( D [,)  +oo )  /\  A. z  e.  A  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
)  ->  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
)
3314, 28, 32ee12an 1353 . . . . 5  |-  ( (
ph  /\  w  e.  RR )  ->  ( A. z  e.  A  (
w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
3433rexlimdva 2667 . . . 4  |-  ( ph  ->  ( E. w  e.  RR  A. z  e.  A  ( w  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
3534ralimdv 2622 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. w  e.  RR  A. z  e.  A  ( w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
364, 35sylbid 206 . 2  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  ->  A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
37 pnfxr 10455 . . . . . 6  |-  +oo  e.  RR*
38 icossre 10730 . . . . . 6  |-  ( ( D  e.  RR  /\  +oo 
e.  RR* )  ->  ( D [,)  +oo )  C_  RR )
396, 37, 38sylancl 643 . . . . 5  |-  ( ph  ->  ( D [,)  +oo )  C_  RR )
40 ssrexv 3238 . . . . 5  |-  ( ( D [,)  +oo )  C_  RR  ->  ( E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4139, 40syl 15 . . . 4  |-  ( ph  ->  ( E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  ->  E. y  e.  RR  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
4241ralimdv 2622 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  ->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  (
y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
431, 2, 3rlim2 11970 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4442, 43sylibrd 225 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  ->  ( z  e.  A  |->  B )  ~~> r  C
) )
4536, 44impbid 183 1  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   ifcif 3565   class class class wbr 4023    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736    +oocpnf 8864   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   RR+crp 10354   [,)cico 10658   abscabs 11719    ~~> r crli 11959
This theorem is referenced by:  rlimresb  12039  rlimsqzlem  12122  rlimcnp  20260
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-ico 10662  df-rlim 11963
  Copyright terms: Public domain W3C validator