Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rlimdmafv Structured version   Unicode version

Theorem rlimdmafv 27998
Description: Two ways to express that a function has a limit, analogous to rlimdm 12337. (Contributed by Alexander van der Vekens, 27-Nov-2017.)
Hypotheses
Ref Expression
rlimdmafv.1  |-  ( ph  ->  F : A --> CC )
rlimdmafv.2  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
Assertion
Ref Expression
rlimdmafv  |-  ( ph  ->  ( F  e.  dom  ~~> r  <-> 
F  ~~> r  (  ~~> r ''' F ) ) )

Proof of Theorem rlimdmafv
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5057 . . . 4  |-  ( F  e.  dom  ~~> r  -> 
( F  e.  dom  ~~> r  <->  E. x  F  ~~> r  x ) )
21ibi 233 . . 3  |-  ( F  e.  dom  ~~> r  ->  E. x  F  ~~> r  x )
3 simpr 448 . . . . . 6  |-  ( (
ph  /\  F  ~~> r  x )  ->  F  ~~> r  x )
4 rlimrel 12279 . . . . . . . . . . . 12  |-  Rel  ~~> r
54brrelexi 4910 . . . . . . . . . . 11  |-  ( F  ~~> r  x  ->  F  e.  _V )
65adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  F  ~~> r  x )  ->  F  e.  _V )
7 vex 2951 . . . . . . . . . . 11  |-  x  e. 
_V
87a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  F  ~~> r  x )  ->  x  e.  _V )
9 breldmg 5067 . . . . . . . . . 10  |-  ( ( F  e.  _V  /\  x  e.  _V  /\  F  ~~> r  x )  ->  F  e.  dom  ~~> r  )
106, 8, 3, 9syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  F  ~~> r  x )  ->  F  e.  dom 
~~> r  )
11 breq2 4208 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( F 
~~> r  y  <->  F  ~~> r  x ) )
1211biimprd 215 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( F 
~~> r  x  ->  F  ~~> r  y ) )
1312spimev 1964 . . . . . . . . . . 11  |-  ( F  ~~> r  x  ->  E. y  F 
~~> r  y )
1413adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  F  ~~> r  x )  ->  E. y  F 
~~> r  y )
15 rlimdmafv.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : A --> CC )
1615adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  ~~> r  x )  ->  F : A
--> CC )
1716adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  ~~> r  x )  /\  ( F 
~~> r  y  /\  F  ~~> r  z ) )  ->  F : A --> CC )
18 rlimdmafv.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
1918adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  ~~> r  x )  ->  sup ( A ,  RR* ,  <  )  =  +oo )
2019adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  ~~> r  x )  /\  ( F 
~~> r  y  /\  F  ~~> r  z ) )  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
21 simprl 733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  ~~> r  x )  /\  ( F 
~~> r  y  /\  F  ~~> r  z ) )  ->  F  ~~> r  y )
22 simprr 734 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  ~~> r  x )  /\  ( F 
~~> r  y  /\  F  ~~> r  z ) )  ->  F  ~~> r  z )
2317, 20, 21, 22rlimuni 12336 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  ~~> r  x )  /\  ( F 
~~> r  y  /\  F  ~~> r  z ) )  ->  y  =  z )
2423ex 424 . . . . . . . . . . 11  |-  ( (
ph  /\  F  ~~> r  x )  ->  ( ( F 
~~> r  y  /\  F  ~~> r  z )  -> 
y  =  z ) )
2524alrimivv 1642 . . . . . . . . . 10  |-  ( (
ph  /\  F  ~~> r  x )  ->  A. y A. z ( ( F  ~~> r  y  /\  F  ~~> r  z )  -> 
y  =  z ) )
26 breq2 4208 . . . . . . . . . . 11  |-  ( y  =  z  ->  ( F 
~~> r  y  <->  F  ~~> r  z ) )
2726eu4 2319 . . . . . . . . . 10  |-  ( E! y  F  ~~> r  y  <-> 
( E. y  F  ~~> r  y  /\  A. y A. z ( ( F  ~~> r  y  /\  F 
~~> r  z )  -> 
y  =  z ) ) )
2814, 25, 27sylanbrc 646 . . . . . . . . 9  |-  ( (
ph  /\  F  ~~> r  x )  ->  E! y  F 
~~> r  y )
29 dfdfat2 27952 . . . . . . . . 9  |-  (  ~~> r defAt  F  <->  ( F  e.  dom  ~~> r  /\  E! y  F  ~~> r  y ) )
3010, 28, 29sylanbrc 646 . . . . . . . 8  |-  ( (
ph  /\  F  ~~> r  x )  ->  ~~> r defAt  F )
31 afvfundmfveq 27959 . . . . . . . 8  |-  (  ~~> r defAt  F  ->  (  ~~> r ''' F )  =  (  ~~> r  `  F
) )
3230, 31syl 16 . . . . . . 7  |-  ( (
ph  /\  F  ~~> r  x )  ->  (  ~~> r ''' F )  =  (  ~~> r  `  F ) )
33 df-fv 5454 . . . . . . . 8  |-  (  ~~> r  `  F )  =  ( iota w F  ~~> r  w )
3415adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  w ) )  ->  F : A --> CC )
3518adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  w ) )  ->  sup ( A ,  RR* ,  <  )  =  +oo )
36 simprr 734 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  w ) )  ->  F  ~~> r  w )
37 simprl 733 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  w ) )  ->  F  ~~> r  x )
3834, 35, 36, 37rlimuni 12336 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  w ) )  ->  w  =  x )
3938expr 599 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  ~~> r  x )  ->  ( F  ~~> r  w  ->  w  =  x ) )
40 breq2 4208 . . . . . . . . . . . . 13  |-  ( w  =  x  ->  ( F 
~~> r  w  <->  F  ~~> r  x ) )
413, 40syl5ibrcom 214 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  ~~> r  x )  ->  ( w  =  x  ->  F  ~~> r  w ) )
4239, 41impbid 184 . . . . . . . . . . 11  |-  ( (
ph  /\  F  ~~> r  x )  ->  ( F  ~~> r  w  <->  w  =  x
) )
4342adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  ~~> r  x )  /\  x  e.  _V )  ->  ( F 
~~> r  w  <->  w  =  x ) )
4443iota5 5430 . . . . . . . . 9  |-  ( ( ( ph  /\  F  ~~> r  x )  /\  x  e.  _V )  ->  ( iota w F  ~~> r  w )  =  x )
457, 44mpan2 653 . . . . . . . 8  |-  ( (
ph  /\  F  ~~> r  x )  ->  ( iota w F  ~~> r  w )  =  x )
4633, 45syl5eq 2479 . . . . . . 7  |-  ( (
ph  /\  F  ~~> r  x )  ->  (  ~~> r  `  F )  =  x )
4732, 46eqtrd 2467 . . . . . 6  |-  ( (
ph  /\  F  ~~> r  x )  ->  (  ~~> r ''' F )  =  x )
483, 47breqtrrd 4230 . . . . 5  |-  ( (
ph  /\  F  ~~> r  x )  ->  F  ~~> r  (  ~~> r ''' F ) )
4948ex 424 . . . 4  |-  ( ph  ->  ( F  ~~> r  x  ->  F  ~~> r  (  ~~> r ''' F ) ) )
5049exlimdv 1646 . . 3  |-  ( ph  ->  ( E. x  F  ~~> r  x  ->  F  ~~> r  (  ~~> r ''' F ) ) )
512, 50syl5 30 . 2  |-  ( ph  ->  ( F  e.  dom  ~~> r  ->  F  ~~> r  (  ~~> r ''' F ) ) )
524releldmi 5098 . 2  |-  ( F  ~~> r  (  ~~> r ''' F )  ->  F  e.  dom  ~~> r  )
5351, 52impbid1 195 1  |-  ( ph  ->  ( F  e.  dom  ~~> r  <-> 
F  ~~> r  (  ~~> r ''' F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725   E!weu 2280   _Vcvv 2948   class class class wbr 4204   dom cdm 4870   iotacio 5408   -->wf 5442   ` cfv 5446   supcsup 7437   CCcc 8980    +oocpnf 9109   RR*cxr 9111    < clt 9112    ~~> r crli 12271   defAt wdfat 27928  '''cafv 27929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-rlim 12275  df-dfat 27931  df-afv 27932
  Copyright terms: Public domain W3C validator