MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimeq Structured version   Unicode version

Theorem rlimeq 12368
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimeq.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
rlimeq.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
rlimeq.3  |-  ( ph  ->  D  e.  RR )
rlimeq.4  |-  ( (
ph  /\  ( x  e.  A  /\  D  <_  x ) )  ->  B  =  C )
Assertion
Ref Expression
rlimeq  |-  ( ph  ->  ( ( x  e.  A  |->  B )  ~~> r  E  <->  ( x  e.  A  |->  C )  ~~> r  E ) )
Distinct variable groups:    x, A    x, D    ph, x
Allowed substitution hints:    B( x)    C( x)    E( x)

Proof of Theorem rlimeq
StepHypRef Expression
1 rlimss 12301 . . 3  |-  ( ( x  e.  A  |->  B )  ~~> r  E  ->  dom  ( x  e.  A  |->  B )  C_  RR )
2 rlimeq.1 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
3 eqid 2438 . . . . . 6  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
42, 3fmptd 5896 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> CC )
5 fdm 5598 . . . . 5  |-  ( ( x  e.  A  |->  B ) : A --> CC  ->  dom  ( x  e.  A  |->  B )  =  A )
64, 5syl 16 . . . 4  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
76sseq1d 3377 . . 3  |-  ( ph  ->  ( dom  ( x  e.  A  |->  B ) 
C_  RR  <->  A  C_  RR ) )
81, 7syl5ib 212 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  ~~> r  E  ->  A  C_  RR )
)
9 rlimss 12301 . . 3  |-  ( ( x  e.  A  |->  C )  ~~> r  E  ->  dom  ( x  e.  A  |->  C )  C_  RR )
10 rlimeq.2 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
11 eqid 2438 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
1210, 11fmptd 5896 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C ) : A --> CC )
13 fdm 5598 . . . . 5  |-  ( ( x  e.  A  |->  C ) : A --> CC  ->  dom  ( x  e.  A  |->  C )  =  A )
1412, 13syl 16 . . . 4  |-  ( ph  ->  dom  ( x  e.  A  |->  C )  =  A )
1514sseq1d 3377 . . 3  |-  ( ph  ->  ( dom  ( x  e.  A  |->  C ) 
C_  RR  <->  A  C_  RR ) )
169, 15syl5ib 212 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  C )  ~~> r  E  ->  A  C_  RR )
)
17 simpr 449 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  x  e.  ( A  i^i  ( D [,)  +oo ) ) )
18 elin 3532 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A  i^i  ( D [,)  +oo )
)  <->  ( x  e.  A  /\  x  e.  ( D [,)  +oo ) ) )
1917, 18sylib 190 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  ( x  e.  A  /\  x  e.  ( D [,)  +oo ) ) )
2019simpld 447 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  x  e.  A
)
2119simprd 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  x  e.  ( D [,)  +oo )
)
22 rlimeq.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  RR )
23 elicopnf 11005 . . . . . . . . . . . . . . . 16  |-  ( D  e.  RR  ->  (
x  e.  ( D [,)  +oo )  <->  ( x  e.  RR  /\  D  <_  x ) ) )
2422, 23syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  ( D [,)  +oo )  <->  ( x  e.  RR  /\  D  <_  x ) ) )
2524biimpa 472 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( D [,)  +oo )
)  ->  ( x  e.  RR  /\  D  <_  x ) )
2621, 25syldan 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  ( x  e.  RR  /\  D  <_  x ) )
2726simprd 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  D  <_  x
)
2820, 27jca 520 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  ( x  e.  A  /\  D  <_  x ) )
29 rlimeq.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  A  /\  D  <_  x ) )  ->  B  =  C )
3028, 29syldan 458 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,)  +oo ) ) )  ->  B  =  C )
3130mpteq2dva 4298 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( A  i^i  ( D [,)  +oo ) )  |->  B )  =  ( x  e.  ( A  i^i  ( D [,)  +oo )
)  |->  C ) )
32 inss1 3563 . . . . . . . . . 10  |-  ( A  i^i  ( D [,)  +oo ) )  C_  A
33 resmpt 5194 . . . . . . . . . 10  |-  ( ( A  i^i  ( D [,)  +oo ) )  C_  A  ->  ( ( x  e.  A  |->  B )  |`  ( A  i^i  ( D [,)  +oo ) ) )  =  ( x  e.  ( A  i^i  ( D [,)  +oo ) )  |->  B ) )
3432, 33ax-mp 5 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  |`  ( A  i^i  ( D [,)  +oo ) ) )  =  ( x  e.  ( A  i^i  ( D [,)  +oo ) )  |->  B )
35 resmpt 5194 . . . . . . . . . 10  |-  ( ( A  i^i  ( D [,)  +oo ) )  C_  A  ->  ( ( x  e.  A  |->  C )  |`  ( A  i^i  ( D [,)  +oo ) ) )  =  ( x  e.  ( A  i^i  ( D [,)  +oo ) )  |->  C ) )
3632, 35ax-mp 5 . . . . . . . . 9  |-  ( ( x  e.  A  |->  C )  |`  ( A  i^i  ( D [,)  +oo ) ) )  =  ( x  e.  ( A  i^i  ( D [,)  +oo ) )  |->  C )
3731, 34, 363eqtr4g 2495 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  B )  |`  ( A  i^i  ( D [,)  +oo ) ) )  =  ( ( x  e.  A  |->  C )  |`  ( A  i^i  ( D [,)  +oo ) ) ) )
38 resres 5162 . . . . . . . 8  |-  ( ( ( x  e.  A  |->  B )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( x  e.  A  |->  B )  |`  ( A  i^i  ( D [,)  +oo ) ) )
39 resres 5162 . . . . . . . 8  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( x  e.  A  |->  C )  |`  ( A  i^i  ( D [,)  +oo ) ) )
4037, 38, 393eqtr4g 2495 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( ( x  e.  A  |->  C )  |`  A )  |`  ( D [,)  +oo ) ) )
41 ssid 3369 . . . . . . . 8  |-  A  C_  A
42 resmpt 5194 . . . . . . . 8  |-  ( A 
C_  A  ->  (
( x  e.  A  |->  B )  |`  A )  =  ( x  e.  A  |->  B ) )
43 reseq1 5143 . . . . . . . 8  |-  ( ( ( x  e.  A  |->  B )  |`  A )  =  ( x  e.  A  |->  B )  -> 
( ( ( x  e.  A  |->  B )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( x  e.  A  |->  B )  |`  ( D [,)  +oo )
) )
4441, 42, 43mp2b 10 . . . . . . 7  |-  ( ( ( x  e.  A  |->  B )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( x  e.  A  |->  B )  |`  ( D [,)  +oo ) )
45 resmpt 5194 . . . . . . . 8  |-  ( A 
C_  A  ->  (
( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
46 reseq1 5143 . . . . . . . 8  |-  ( ( ( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C )  -> 
( ( ( x  e.  A  |->  C )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( x  e.  A  |->  C )  |`  ( D [,)  +oo )
) )
4741, 45, 46mp2b 10 . . . . . . 7  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  ( D [,)  +oo ) )  =  ( ( x  e.  A  |->  C )  |`  ( D [,)  +oo ) )
4840, 44, 473eqtr3g 2493 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  |`  ( D [,)  +oo )
)  =  ( ( x  e.  A  |->  C )  |`  ( D [,)  +oo ) ) )
4948breq1d 4225 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  |`  ( D [,)  +oo ) )  ~~> r  E  <->  ( ( x  e.  A  |->  C )  |`  ( D [,)  +oo ) )  ~~> r  E
) )
5049adantr 453 . . . 4  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( ( x  e.  A  |->  B )  |`  ( D [,)  +oo ) )  ~~> r  E  <->  ( ( x  e.  A  |->  C )  |`  ( D [,)  +oo ) )  ~~> r  E
) )
514adantr 453 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  ( x  e.  A  |->  B ) : A --> CC )
52 simpr 449 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  A  C_  RR )
5322adantr 453 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  D  e.  RR )
5451, 52, 53rlimresb 12364 . . . 4  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  B )  ~~> r  E  <->  ( (
x  e.  A  |->  B )  |`  ( D [,)  +oo ) )  ~~> r  E
) )
5512adantr 453 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  ( x  e.  A  |->  C ) : A --> CC )
5655, 52, 53rlimresb 12364 . . . 4  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  C )  ~~> r  E  <->  ( (
x  e.  A  |->  C )  |`  ( D [,)  +oo ) )  ~~> r  E
) )
5750, 54, 563bitr4d 278 . . 3  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  B )  ~~> r  E  <->  ( x  e.  A  |->  C )  ~~> r  E ) )
5857ex 425 . 2  |-  ( ph  ->  ( A  C_  RR  ->  ( ( x  e.  A  |->  B )  ~~> r  E  <->  ( x  e.  A  |->  C )  ~~> r  E ) ) )
598, 16, 58pm5.21ndd 345 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  ~~> r  E  <->  ( x  e.  A  |->  C )  ~~> r  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    i^i cin 3321    C_ wss 3322   class class class wbr 4215    e. cmpt 4269   dom cdm 4881    |` cres 4883   -->wf 5453  (class class class)co 6084   CCcc 8993   RRcr 8994    +oocpnf 9122    <_ cle 9126   [,)cico 10923    ~~> r crli 12284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-pre-lttri 9069  ax-pre-lttrn 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-po 4506  df-so 4507  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-er 6908  df-pm 7024  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-ico 10927  df-rlim 12288
  Copyright terms: Public domain W3C validator