MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimi Unicode version

Theorem rlimi 11987
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlimi.1  |-  ( ph  ->  A. z  e.  A  B  e.  V )
rlimi.2  |-  ( ph  ->  R  e.  RR+ )
rlimi.3  |-  ( ph  ->  ( z  e.  A  |->  B )  ~~> r  C
)
Assertion
Ref Expression
rlimi  |-  ( ph  ->  E. y  e.  RR  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C ) )  <  R ) )
Distinct variable groups:    y, z, A    y, B    y, C, z    ph, y    y, R, z    z, V
Allowed substitution hints:    ph( z)    B( z)    V( y)

Proof of Theorem rlimi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rlimi.2 . 2  |-  ( ph  ->  R  e.  RR+ )
2 rlimi.3 . . 3  |-  ( ph  ->  ( z  e.  A  |->  B )  ~~> r  C
)
3 rlimf 11975 . . . . . . 7  |-  ( ( z  e.  A  |->  B )  ~~> r  C  -> 
( z  e.  A  |->  B ) : dom  ( z  e.  A  |->  B ) --> CC )
42, 3syl 15 . . . . . 6  |-  ( ph  ->  ( z  e.  A  |->  B ) : dom  ( z  e.  A  |->  B ) --> CC )
5 rlimi.1 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  A  B  e.  V )
6 eqid 2283 . . . . . . . . . 10  |-  ( z  e.  A  |->  B )  =  ( z  e.  A  |->  B )
76fmpt 5681 . . . . . . . . 9  |-  ( A. z  e.  A  B  e.  V  <->  ( z  e.  A  |->  B ) : A --> V )
85, 7sylib 188 . . . . . . . 8  |-  ( ph  ->  ( z  e.  A  |->  B ) : A --> V )
9 fdm 5393 . . . . . . . 8  |-  ( ( z  e.  A  |->  B ) : A --> V  ->  dom  ( z  e.  A  |->  B )  =  A )
108, 9syl 15 . . . . . . 7  |-  ( ph  ->  dom  ( z  e.  A  |->  B )  =  A )
1110feq2d 5380 . . . . . 6  |-  ( ph  ->  ( ( z  e.  A  |->  B ) : dom  ( z  e.  A  |->  B ) --> CC  <->  ( z  e.  A  |->  B ) : A --> CC ) )
124, 11mpbid 201 . . . . 5  |-  ( ph  ->  ( z  e.  A  |->  B ) : A --> CC )
136fmpt 5681 . . . . 5  |-  ( A. z  e.  A  B  e.  CC  <->  ( z  e.  A  |->  B ) : A --> CC )
1412, 13sylibr 203 . . . 4  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
15 rlimss 11976 . . . . . 6  |-  ( ( z  e.  A  |->  B )  ~~> r  C  ->  dom  ( z  e.  A  |->  B )  C_  RR )
162, 15syl 15 . . . . 5  |-  ( ph  ->  dom  ( z  e.  A  |->  B )  C_  RR )
1710, 16eqsstr3d 3213 . . . 4  |-  ( ph  ->  A  C_  RR )
18 rlimcl 11977 . . . . 5  |-  ( ( z  e.  A  |->  B )  ~~> r  C  ->  C  e.  CC )
192, 18syl 15 . . . 4  |-  ( ph  ->  C  e.  CC )
2014, 17, 19rlim2 11970 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
212, 20mpbid 201 . 2  |-  ( ph  ->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  (
y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) )
22 breq2 4027 . . . . 5  |-  ( x  =  R  ->  (
( abs `  ( B  -  C )
)  <  x  <->  ( abs `  ( B  -  C
) )  <  R
) )
2322imbi2d 307 . . . 4  |-  ( x  =  R  ->  (
( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  <->  ( y  <_  z  ->  ( abs `  ( B  -  C ) )  <  R ) ) )
2423rexralbidv 2587 . . 3  |-  ( x  =  R  ->  ( E. y  e.  RR  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  <->  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  R
) ) )
2524rspcv 2880 . 2  |-  ( R  e.  RR+  ->  ( A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  R
) ) )
261, 21, 25sylc 56 1  |-  ( ph  ->  E. y  e.  RR  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C ) )  <  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736    < clt 8867    <_ cle 8868    - cmin 9037   RR+crp 10354   abscabs 11719    ~~> r crli 11959
This theorem is referenced by:  rlimi2  11988  rlimclim1  12019  rlimuni  12024  rlimcld2  12052  rlimcn1  12062  rlimcn2  12064  rlimo1  12090  o1rlimmul  12092  rlimno1  12127  xrlimcnp  20263  rlimcxp  20268  chtppilimlem2  20623  dchrisumlem3  20640
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-pm 6775  df-rlim 11963
  Copyright terms: Public domain W3C validator