MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimpm Unicode version

Theorem rlimpm 11974
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimpm  |-  ( F  ~~> r  A  ->  F  e.  ( CC  ^pm  RR ) )

Proof of Theorem rlimpm
Dummy variables  w  f  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rlim 11963 . . . . 5  |-  ~~> r  =  { <. f ,  x >.  |  ( ( f  e.  ( CC  ^pm  RR )  /\  x  e.  CC )  /\  A. y  e.  RR+  E. z  e.  RR  A. w  e. 
dom  f ( z  <_  w  ->  ( abs `  ( ( f `
 w )  -  x ) )  < 
y ) ) }
2 opabssxp 4762 . . . . 5  |-  { <. f ,  x >.  |  ( ( f  e.  ( CC  ^pm  RR )  /\  x  e.  CC )  /\  A. y  e.  RR+  E. z  e.  RR  A. w  e.  dom  f
( z  <_  w  ->  ( abs `  (
( f `  w
)  -  x ) )  <  y ) ) }  C_  (
( CC  ^pm  RR )  X.  CC )
31, 2eqsstri 3208 . . . 4  |-  ~~> r  C_  ( ( CC  ^pm  RR )  X.  CC )
4 dmss 4878 . . . 4  |-  (  ~~> r  C_  ( ( CC  ^pm  RR )  X.  CC )  ->  dom  ~~> r  C_  dom  ( ( CC  ^pm  RR )  X.  CC ) )
53, 4ax-mp 8 . . 3  |-  dom  ~~> r  C_  dom  ( ( CC  ^pm  RR )  X.  CC )
6 dmxpss 5107 . . 3  |-  dom  (
( CC  ^pm  RR )  X.  CC )  C_  ( CC  ^pm  RR )
75, 6sstri 3188 . 2  |-  dom  ~~> r  C_  ( CC  ^pm  RR )
8 rlimrel 11967 . . 3  |-  Rel  ~~> r
98releldmi 4915 . 2  |-  ( F  ~~> r  A  ->  F  e.  dom  ~~> r  )
107, 9sseldi 3178 1  |-  ( F  ~~> r  A  ->  F  e.  ( CC  ^pm  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023   {copab 4076    X. cxp 4687   dom cdm 4689   ` cfv 5255  (class class class)co 5858    ^pm cpm 6773   CCcc 8735   RRcr 8736    < clt 8867    <_ cle 8868    - cmin 9037   RR+crp 10354   abscabs 11719    ~~> r crli 11959
This theorem is referenced by:  rlimf  11975  rlimss  11976  rlimclim1  12019
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-dm 4699  df-rlim 11963
  Copyright terms: Public domain W3C validator