Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrel Unicode version

Theorem rlimrel 11967
 Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.)
Assertion
Ref Expression
rlimrel

Proof of Theorem rlimrel
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rlim 11963 . 2
21relopabi 4811 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358   wcel 1684  wral 2543  wrex 2544   class class class wbr 4023   cdm 4689   wrel 4694  cfv 5255  (class class class)co 5858   cpm 6773  cc 8735  cr 8736   clt 8867   cle 8868   cmin 9037  crp 10354  cabs 11719   crli 11959 This theorem is referenced by:  rlim  11969  rlimpm  11974  rlimdm  12025  caucvgrlem2  12147  caucvgr  12148 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-xp 4695  df-rel 4696  df-rlim 11963
 Copyright terms: Public domain W3C validator