MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimres2 Unicode version

Theorem rlimres2 12035
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimres2.1  |-  ( ph  ->  A  C_  B )
rlimres2.2  |-  ( ph  ->  ( x  e.  B  |->  C )  ~~> r  D
)
Assertion
Ref Expression
rlimres2  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  D
)
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)    D( x)

Proof of Theorem rlimres2
StepHypRef Expression
1 rlimres2.1 . . 3  |-  ( ph  ->  A  C_  B )
2 resmpt 5000 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  B  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
31, 2syl 15 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
4 rlimres2.2 . . 3  |-  ( ph  ->  ( x  e.  B  |->  C )  ~~> r  D
)
5 rlimres 12032 . . 3  |-  ( ( x  e.  B  |->  C )  ~~> r  D  -> 
( ( x  e.  B  |->  C )  |`  A )  ~~> r  D
)
64, 5syl 15 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  |`  A )  ~~> r  D
)
73, 6eqbrtrrd 4045 1  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  D
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    C_ wss 3152   class class class wbr 4023    e. cmpt 4077    |` cres 4691    ~~> r crli 11959
This theorem is referenced by:  divcnv  12312  dvfsumrlimge0  19377  dvfsumrlim2  19379  dfef2  20265  cxp2lim  20271  chtppilimlem2  20623  chpchtlim  20628  pnt2  20762
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-pm 6775  df-rlim 11963
  Copyright terms: Public domain W3C validator