Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo2i Structured version   Unicode version

Theorem rmo2i 3249
 Description: Condition implying restricted "at most one." (Contributed by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
rmo2.1
Assertion
Ref Expression
rmo2i
Distinct variable group:   ,,
Allowed substitution hints:   (,)

Proof of Theorem rmo2i
StepHypRef Expression
1 rexex 2767 . 2
2 rmo2.1 . . 3
32rmo2 3248 . 2
41, 3sylibr 205 1
 Colors of variables: wff set class Syntax hints:   wi 4  wex 1551  wnf 1554  wral 2707  wrex 2708  wrmo 2710 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-ral 2712  df-rex 2713  df-rmo 2715
 Copyright terms: Public domain W3C validator