Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmoanim Unicode version

Theorem rmoanim 28060
Description: Introduction of a conjunct into restricted "at most one" quantifier, analogous to moanim 2212. (Contributed by Alexander van der Vekens, 25-Jun-2017.)
Hypothesis
Ref Expression
rmoanim.1  |-  F/ x ph
Assertion
Ref Expression
rmoanim  |-  ( E* x  e.  A (
ph  /\  ps )  <->  (
ph  ->  E* x  e.  A ps ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem rmoanim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 impexp 433 . . . . 5  |-  ( ( ( ph  /\  ps )  ->  x  =  y )  <->  ( ph  ->  ( ps  ->  x  =  y ) ) )
21ralbii 2580 . . . 4  |-  ( A. x  e.  A  (
( ph  /\  ps )  ->  x  =  y )  <->  A. x  e.  A  ( ph  ->  ( ps  ->  x  =  y ) ) )
3 rmoanim.1 . . . . 5  |-  F/ x ph
43r19.21 2642 . . . 4  |-  ( A. x  e.  A  ( ph  ->  ( ps  ->  x  =  y ) )  <-> 
( ph  ->  A. x  e.  A  ( ps  ->  x  =  y ) ) )
52, 4bitri 240 . . 3  |-  ( A. x  e.  A  (
( ph  /\  ps )  ->  x  =  y )  <-> 
( ph  ->  A. x  e.  A  ( ps  ->  x  =  y ) ) )
65exbii 1572 . 2  |-  ( E. y A. x  e.  A  ( ( ph  /\ 
ps )  ->  x  =  y )  <->  E. y
( ph  ->  A. x  e.  A  ( ps  ->  x  =  y ) ) )
7 nfv 1609 . . 3  |-  F/ y ( ph  /\  ps )
87rmo2 3089 . 2  |-  ( E* x  e.  A (
ph  /\  ps )  <->  E. y A. x  e.  A  ( ( ph  /\ 
ps )  ->  x  =  y ) )
9 nfv 1609 . . . . 5  |-  F/ y ps
109rmo2 3089 . . . 4  |-  ( E* x  e.  A ps  <->  E. y A. x  e.  A  ( ps  ->  x  =  y ) )
1110imbi2i 303 . . 3  |-  ( (
ph  ->  E* x  e.  A ps )  <->  ( ph  ->  E. y A. x  e.  A  ( ps  ->  x  =  y ) ) )
12 19.37v 1852 . . 3  |-  ( E. y ( ph  ->  A. x  e.  A  ( ps  ->  x  =  y ) )  <->  ( ph  ->  E. y A. x  e.  A  ( ps  ->  x  =  y ) ) )
1311, 12bitr4i 243 . 2  |-  ( (
ph  ->  E* x  e.  A ps )  <->  E. y
( ph  ->  A. x  e.  A  ( ps  ->  x  =  y ) ) )
146, 8, 133bitr4i 268 1  |-  ( E* x  e.  A (
ph  /\  ps )  <->  (
ph  ->  E* x  e.  A ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531   F/wnf 1534   A.wral 2556   E*wrmo 2559
This theorem is referenced by:  2reu1  28067
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-ral 2561  df-rmo 2564
  Copyright terms: Public domain W3C validator